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PREFACE

The practical problems brought about by the Great War have given
rise to theoretical problems.

In acoustics interest centers about the problem of the propapgation
of sound in a nonhomogeneous moving medium, which is the nature of the
atmosphere and the water of seas and rivers, as well as about prob-
lems concerning moving sources and sound receivers. These problems are
closely connected; they lie at the boundary between acoustics and hydro-
dynamics in the broad sense of the word.

It is precisely these aspects of acoustics that have been either
l1ittle developed theoretically and experimentally or are not very popular
among acoustics technicians. This is the circumstance that has provided
the occasion for the appearance of this book, which is devoted to the
theoretical basis of the acoustics of a moving nonhomogeneous medium.
Experiments are considered only to illustrate or confirm some theoretical
explanation or derivation.

As regards the choice of theoretical questions and their treatment,
the book does not in any way pretend to be complete. The choice of
material was to a considerable extent dictated by the author's own In-
vestigations, some of which were, previously published and others first
presented herein. Certain problems were not worked through to the end
but have merely been indicated. The author, nevertheless, included them
in the book, on account of the creative interest which they may arouse
among investigators in the field of theoretical acoustics. The author
expresses his appreciation to N. N. Andreev and S. I. Rzhevkin, who were
acquainted with the manuscript of this book, for their useful advice and
comments, and also to L. D. Landau, whose consultation made possihle the
clarification of a number of problems.

Institute of Physics, USSR Academy of Sciences
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CHAPTER I
ACOUSTICS EQUATIONS OF A NONHOMOGENEOUS MOVING MEDIUM

1. Outline of Dynamics of a Compressible Fluid

The medium in which sound is propagated, whether it is a gas, a
liquid, or a solid body, has an atomic structure. If, however, the fre-
quency of the gound vibrations is not too large, this atomic character
of the medium may be ignored.

For a gas it may be shown (ref. 1) that if f << l/t, where f 1is
the frequency of the vibrations and T the time taken to traverse the
free path between colllsions, the gas may be considered as a dense medium
characterized by certain constants. This method of considering the prob-
lem is assumed in aerodynamics and in the theory of elasticity. Since
the atomic character of the medium is ignored, the phenomenon of the dls-
persion of sound cannot, in all strictness, be taken into account. For-
tunately, in the majority of practical problems, the dispersion of sound
does not have great significance. For this reason, phenomena which require
congideration of the atomic nature of the medium will not be considered,
and the aerodynamic equations of a compressible gas wlll be used as the
basis of the theoretical analysis of the acoustics of a moving medium.

These equations are first considered without the agsumption of any
specific restrictions for the acoustics (such as large frequency and small
amplitude of vibrations). The equations of the dynamics of a compressible
gas express the three fundamental laws of conservation: (1) conservation
of matter, (2) conservation of momentum, and (3) conservation of energy.
In order to formulate these laws, a certain system of coordinates x, y,
and z, fixed relative to the undisturbed medium, is chosen. Further, t
ig the time, ¥ 1is the velocity of the gas in this system (Translator's
note: An arrow is used in the typescript to indicate that a symbol stands
for a vector), Vo= Vg, Vo = Vo, and Vg =V, are the components of ¥
along the x, y, and z axes, respectively, and p 1s the density of the
gas. In these notations, the law of the conservation of matter, mathema-
tically expressed by the equation of continuity, assumes the form

St SE; (pvy) = O (1.1)
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where the summation 1s carried out for k =1, 2, and 3. The vector oV
is the flow density vector of the substance. This equation states that
the change in amount of substance in any small volume is equal to the
flow of the substance through the surface enclosing this volume.

The vector pv may be considered also as the vector of the momen-
tum density. The change of momentum in any small volume should be equal
to the momentum transported by the motion of the fluid through the sur-
face enclosing this volume plus the force applied to the volume.

The momentum flow due to the transport of momentum is a tensor
with the components: pvlvk (1,k = 1,2,5). The assumption is made that
there are no volume forces. Hence the force applied to the volume is
equal to the resultant of the stresses applied to the surface of the
volume. The tensor of these stresses will be denoted by T;, and is

i
composed of the scalar pressure p and the viscous components S1k

Tik =P - By - six (1.2)
where &y =1 If 1=k, and 8y, =0 if 1 {£ k.

When applied to a small volume, the law of the conservation of mo-
mentum can be written in the form

J
561';' (pvl) + gx—k (Tik + leVk) =0 (1.3)

1 and k =1, 2, and 3 and again is summed for k = 1, 2, and 3. The
equation of the conservation of energy should express the fact that the
change in the total energy in a small volume, made up of the kinetic
energy and the internal energy of a unit volume of the gas, 1s equal to
the flow of the kinetic and internal energy through the surface encloging
this volume, the heat flow through this surface plus the work performed
by the stresses acting on this volume. The part of the energy flow vec-

tor due to the transport of the kinetic energy 0 - %?. and the internal

energy PE (E is the energy of unit mass of the gas) 1is (p %ﬁ + pE)Q,

If the heat flow vector is denoted by 5(81,8?,83) and the 6onservation
law is applied to a small volume,

) v d 2
AP 5+ PE] 4+ 5;; o %r + PE | v + Sy +

o)
Ek- (viTy ) = 0 (1.4)

3345
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where the summation 1s for 1 and k =1, 2, and 3. The last term gives
the work of the stresses on a unit volume. For an isotropic, homogeneous
liquid (or gas), the stresses Six are connected with the deformations
Vix according to the Newtonian relationl

Siy = a2uvyy + ¥ - div ;; Sik = 24 -+ Vik (1.5)

where p 1s the viscosity of the gas and vix 1is the tensor of the
deformations

ov ov
_ 1 i k
Vik = 5 = + ¥ (1.6)

The magnitude 7y can be written in the form 7y = u°' —2p/3, where
u' 1s the so-called second coefficlent of viscosity (see ref. (1)).
With this coefficient, account is taken of the conversion of the energy
of the macroscopic motion of a gas into the energy of the internal
degrees of freedom of the molecules (the rotation of the molecules), a
fact which is of appreclable significance only for ultrasonic frequencies.
For this reason, in the majority of cases the assumption may be made
that p' = 0 and y = -2u/3 (the value assumed in the theory of Stokes).

The flow of heat S oxpressed In terms of the gradient of the
absolute temperature T 1is

Sk=)\-grx_;)\=p-cvu (1.7)
k
where x 1is the coefficient of the heat conductivity of the gas and
¢y 1s the specific heat of the gas at constant volums.
To the three fundamental hydrodynamic equations, (1.1), (1.3), and
(1.4), the equation of state of the gas (or liquid) connecting the pres-
sure p, the density p, and the temperature T is added

p = Z(p,T) (1.8)

Equations (1.1), (1.3), and (1.4) permit a rational dstermination
of the flow of substance , the flow of momentum represented by the

lThis form for vix follows from the assumption of the isotropic
character and homogeneity of the gas or liquid if a linear relation is
assumed betwecn the stress tensor 84y and the deformation tensor vy .
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tensor Mjy, and the flow of energy N, which, like the flow of substance,
can be wrltten in vector form. This determination will be such that the
divergence of the flow, taken with inverse sign, is equal to the deriva-
tive with respect to the time of the density of the corresponding mag-
nitude. In this manner from equation (1.1) for the flow of substance
(equal to the flow of momentum) the following is obtained:

T = ov (1.9)

From equation (1.3), substitution of the value of Sji from equa-
tion (1.5), gives the tensor of the momentum flow

2 s
Myq - PV + P+ 7 - div v - 2u - vig

My = PVyVi - 2uvyy = Mgy 1 # k (1.10)
where, as before, 1 and k =1, 2, and 3.

The terms of the form pvf, pvivy g&lve the momentum flow due to
the transport of momentum by the motion of the fluid, and the terms
containing 0, p, and 7y give the flow of momentum due to the action
of the pressure forces and the viscous stresses.

Finally, from equation (1.4), substitution of 83, from equation
(1.5) yields the energy flow

- 2 R _ =
N=(o%_+pE)x?+§+p?r'+u{VV2+[:rotv><V_]}+
(

-

y o div v - v 1.11)
The first term gilves ghe energy flow due to the transport of energy

by the fluid, the second (8) gives the heat flow, and the term® pv

and the terms with p and » give the part of the energy flow due to

the work of the pressure forces and the viscous stresses.

The fundamental equations can also be written in vector from, by

substitution of the value of the tensor Tj;), from equations (1.2) and
(1.5) in equations (1.3) and (1.4). Equation (1.1) may, however, be as

£+ atv(ev) = 0 (1.12)

2The vector ﬁ = (p %E + é)%: representing the flow of energy for

an ideal incompressible liquid, is called the N. Umov vector (ref. 3).

3343
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If use is made of (1.12) equation (1.3) can be written in the form

o &Y - - 9p + pAv + % ny div v (1.13)

where V is the symbol for the gradient and A = /%2 BZ/ByE +
3%2/3z2 = v®. The magnitude dv/dt is the total derivative of the velo-
city with respect to time and is equal to

pu

¢ - —» - d - -
%% = g% + (v,V)v = %% + v %? + Erot v XV (1.14)

The energy equation (eq. (1.4)), with the aid of equation (1.12), assumes
the form

o g% = AN- AT +Q-p.div? (1.15)
dE 1) >
—t E 1.15"
T - S5t + (v,9) ( 5')

where Q 1s the dissipative function
3

Q = z Sik . Vik (1.16)

1,k=1

If this equation is divided by p, it may be interpreted so that a
change of energy of unit mass dE/dt 13 equal to the heat flow XAT/D,
the amount of heat divided by the work of the viscous forces Q/p, and
the work of the pressure forces (-p div z/p).

This equation may also be interpreted in terms of thermodynamics.
The first law of thermodynamics for unit mass of substance yields

dE = TdS - p - 4V (1.17)

where E 1is the energy of unit mass; S, its entropy; p, the pressure,
and V, the gpecific volume (V = 1/p). Thus

d€ _ ., a8 av _ p dS

dt at ~ P dt at (1.18)

o
als

+ B
02
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On the other hand,

dp op - >
LA v = - . div v 1.19
it = 5t + (v,v) e p ( )
go that
-
div v P de
P 3 = 5 it (1.20)

For adiabatic processes

P
T =5 It (1.21)

E - Jpp dp _ p (1.22)
PP
w=Ea+£R_- t/fp dp (1.23)
p 0

is termed the heat function. If the process is nonadiabatic, equation
(1.18) holds. From equations (1.15) and (1.18) the following is ob-
talned:

from which

The magnitude

(1.24)

at

7 48 % AT +

oo

The magnitude T(dS/dt) 1is the increase of heat of unit mass of
the gas, which 1s determined exclusively by the heat conductivity and
the work of the friction forces. If A and u are neglected since the
effects produced by them in the over-all energy balance are usually small
corrections, the following results:

ds a8 (o ‘
ds oS -0 : 1.25
it =ax t (H V8) ( )

that is, the adiabatic motion of the fluid. The Bernoulli theorem holds
for this motion if it is also irrotatimal (rot v = 0).

Ir

v o= - Vb " (1.26)

3543
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where ¢ 1s the velocity potential, from equations (1.13) and (1.14)

-
IJ/

<1
[
-/
lad 'S

1 N2l - owp
+ 3 (vd) = -5 (1.27)

A\

~

and since, on the basis of equation (1.23), p/p = yw, integration of
equation (1.27) gives

p
od 2
w = L/q e (ve)® (1.27")

If the compressibility of the fluid 1is neglected,

w = £ + constant (1.28)
Po
gso that
d>r _Po 2
=p - Y
p 05t~ 3 (V)" + congtant (1.29)

and in the case of steady flows (38/dt = 0)

2
OO QOV

p = constant - = (v®)2 = constant - (1.30)

Because the entropy remains constant during the motion for an ideal
fluid (A = pu = 0) 1introduction of the variables o and S in the
equation of state, equation (1.8), in place of the variables p and T,
is expedient since with such a choice of variables one of the variables
(S) remains constant, whereas the temperature T varles even for an
ideal fluid (for adiabatic compressions and sxpansions of the filuid).
The following may be written in place of equation (1.8)

p =2"(p,S) (1.8")

2. Equations of Acoustics in Absence of Wind

The equations which determine the propagation of gound in a motion-
less medium can now be considered. The vibrations of the medium are
called sonic vibrations or simply sound if the amplitude of the vibra-
tions is 8o small that it is possible to neglect all the cheanges in gtate
of the gas in any small volume are produced in it by the transport
(convection) of mass, momentum, and energy. This situation is the con-
dition of linearity of the vibrations. Further, these vibrations are
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assumed to occur with frequencies in the hearing range (the region of
classlcal acoustics) or near this range (infra and ultra gound). Mathe-
matically the above agsumption reduces to the neglect of the terms in
the asrodynamic equations of a compressible gas which contain second
powers or the products of small magnitudes which determine the deviations
of the state of the gas from equilibrium. Where i 18 the deviation of
the pressure from the equilibrium value Po, P 18 set equal to Py + 7,
p = DO + & where pO i1s the value of the density for p = Po and

T = Ty, and finally ¥ = E(E is a small velocity). Similarly for the
temperature, entropy, and energy,

T = Ty + €
E = EO + €

In place of equations (1.12) and (1.13), the following is obtained:

—’
—-
po.§~=-vﬂ+u-l\£+%pvdivg (1.31)

i
@)

g% + by div £ (1.32)

The equation of state of the gas, for an ideal gas in the variables
p and T 1is
P=0. rT (1'33)
where r 1is the gas constant for unit mass; and in the variables p

and S 5.5
0

p=pPy «-— .8 " (1.34)

where ¢y 1ig the specific heat at constant volume (cy = r/(y-1)), and
Yy =c /cV is the ratioc of the specific heats at constant pressurs and
constant volume. For gmall changes of state the folliowing is obtained
from equation (1.34):

H=75—6+—G+-"=026+h0+ -..;h:—

3343
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For ¢ = 0, only the first term representing small changes Iin pres-
sure for small adiabatic compression or expansion of the gas remains.

The magnitude
p
c=1/r 2 (1.35)
o

is the adiabatic velocity of sound. The second term gives the change in
pressure produced by the addition or decrease of heat. The changes of
entropy o obey equation (1.24) which is written by neglecting magni-
tudes of the second order of smallness as follows:

do A
I =X AB; N = pc ™ 1.36
O 3t Po v ( )

The changes In temperature 6 may be expressed in terms of the
changes in density and entropy. From equation (1.17)

7 =(%E) (1.37)
o

The energy of an ideal gas is equal to

PO p7 c v

E=c,T = P = . . ® (1.38)
Vo -1e ey Ty -1

from which OE/3S = OE/dc 1s obtained in the form

Pg py-l g'c

v
o - 20 e T (1.37")
pg 17 - 150v Y - 1l)pcy

that is, for small values of p and S

Po 5 Po

+-——z-————--—0+--. (1.39)
D%cv Poly - 1)CV

6 =

where the flrst term represents the change in temperature during adlabatic

compression or expansion of the gas and the second term represents the
change in temperature due to the change in entropy of the gas.

Substitution in equation (1.36) yields

(r - 1)e
%§'= HAC + xlAé; Xy = X -—-—7;——42 (1.40)
0
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Equations (1.31), (1.32), and (1.40) together with the equation of
state (1.34) determine the propagation of sound in a motionless medium
when account is taken of the viscoslty and heat conductivity of the

medium.

The effects arising from the presence of viscosity and heat con-
ductivity reduce, in a first approximation, to the absorption of the
sound by the medium. This absorption is generally not large and its
magnitude for a plane wave can be determined without difficulty. If ite
direction of propagailon 1s along the ox axis, the frequency of the
gound equals ®, and the wave number vector is equal to k,

£ = Eoei(wt-k-x) )

5 - o gllwt-k-x) & (1.41)

0

o = ooei(wt‘k'x) y

where £, 8,, 0, are the amplitudes of vibration of the corresponding

magnitudes. Substitution of equations (1.41) in equations (1.31), (1.32),

and (1.40) yields

- 2 _4 .2 .
lwPpE, = 1k(cd, + hoy) = Mk“E (1.31')
1wdy - 1kppEy = 0 (1.32")
iwo, = - wk2o_ - . k25 (1L.40")
0 0 1 0 *

Elimination of the amplitudes gives the relation between X and «

kp h « % k@
wg =k «fc? . Q. L = |+ R (1.42)
w (1o + %) 3

If k 1is set equal to w/c - lo, where a 1is the coefficient of
damping of the wave, the velocity of propagation (' 1in the first
approximation is equal to C, and the damping coefficient a is equal
to

2
q=%&i+_x_(1_§_)w_ (1.43)

3343
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where a?f = po/oo is the square of the isothermal velocity of sound.

For air a = 1,1 - lO‘lezcm‘l, where f = w/2n 1is the frequency of
sound in Hz (1 Hertz = 1 cycle/sec). Hence in many cases the effect
of the viscosity and heat conductivity may be neglected or their effect
taken into account by introduction of the absorption coefficient in the
final results. The smallness of the effect of viscosity and heat con-
ductivity of the air on the propagation of sound 1is determined not only
by the smallness of the coefficlents p and » but also by the small-
ness of the gradients of all magnitudes which vary in the sound
propagation.

Equations (1.31) and (1.40) show that these gradients enter the
equation in the form of second derivatives of &, o, and so forth
(for example, pAE and »Ao). In the propagation of a wave in free
space these derivatives are in order of magnitude equal to E/X s c/xz,
., and so forth, and become appreclable only for very short wave
lengths (as the final equation for the absorption coefficient o shows
gince a increases proportionally to the square of the frequency.

Near the boundaries of solid or fluid bodies which may be considered
as stationary, the losses by viscosity and heat conductivity increase.
In these cases sharper changes of state of the gas in space occur and
the second derivatives of £, o, and © are determined not by the length
of the wave but either by the dimensions of the body 1 so that

52 ® £/12 and Ao = o/1% or by the "natural” lemgth d' = VV/e (this
length is in addition to the lengths A and 1, and is determined from
dimensional considerations), where v 1is the kinematic viscosity

(v = u/o), or by the length 4" = /*/®. 1In these cases the order of the

~

magnitudes is given by AL = E/d“j and AoC = o/dz.

In general, the losses by viscosity and heat conductivity near the
boundary of a solid or fluld body are determined by the least of the
three lengths A, I, and d(d', @").

Despite the increase in the losses near walls and stationary boun-
daries, the losses remain small and can be considered a correction to
{ihe motion which occurs without losses (except for the case of the propa-
gation of sound in very narrow channels). An example of the approximate
computation of the effects of viscosity and heat conductivity may be
found in the work of the author (ref. 4).

Tn addition to the absorption of sound aggociated with the heat
conductivity and the viscosity of the medium still another molecular
absorption of sound exists which was discovered by V. Knudsen (ref. 5)
and explained by G. Kneser (ref. 6). The physical character of this
absorption lles in the conversion of the energy of the sound vibrations
into the energy of inner molecular motion (energy of rotation of the
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molecules). This absorption likewise increases with the frequency and
is of special significance for the ultrasonic range.

As the congideration of these problems deviates from the present
subjJect, discussion is limited to the references glven.

In all those cases where the losses of the sound energy are not of
Interest, the viscosity and heat conductivity of the air may be ignored.
If X and p are set equal to O in equations (1.3') and (1.40), o = 0,
that is, adiabatic propagation of sound is obtained and the equations
describing this propagation assume the form

—)
oy - %% - (1.44)
R o Laivi-o (1.45)
St 0
T = c2% (1.46)

These equations may be solved with the aid of the single function
¢ which is termed the velocity potential (or simply the potential).
The first three equations (1.44) are satisfied by setting

- .0
"=t
(1.47)
._’
£ =- Y

The wave equation for the potential from equations (1.46) and (1.45) 1is
obtained:

Ag - == . —X - 0 (1.48)

which, in the presence of bodies, must be solved with the boundary con-
dition

- (gg) =&y, (on the surface of the body)
(1.49)

where O/dn 1is the derivative along the normal to the surface of the
body and EOn 1s the normal velocity of the surface of the body assumed
as small. In place of equation (1.49), for stationary bodieg

\/v
L -0 (on the surface of the body)
on (1.49")

3343
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For a unique solution of the problem of the sonilc field described
by equation (1.48) the initial conditions for ¢ and dp/dt must be
formulated in addition to the boundary conditions of equations (1.49)
or (1.49'").

3. Energy and Energy Flow In Acoustics

For linear acoustics all magnitudes referring to the sound are
computed with an accuracy up to the first degree of the amplitude A,
which may, for example, be the amplitude of a piston which excites sound
vibrations. Achievement of more accurate solutions of the equations of
hydrodynamics will yleld the succeeding approximation containing terms
proportional to AZ, and so forth (when account is taken of nonlinear
phenomena). For the pressure p, the density p, and the velocity of
motion V, the following series 1s written:

D =pg+ M +ApH e

p=po+6l+62+...

-» - - >

Vo=V o+ B+ Eo + +.n (1.50)

The magnitudes pg, P, and ;O refir to the motion undisturbed by the
sound ; the magnitudes T, 61, and El are proportional to A, the
magnitudes 7o, 62, and 52 are proportional to AB, and so forth. The
energy and energy flow contain the squares of the magnitudes 61, 21,

and .. For this reason caution must be used when the energy and energy
flow are computed in linear acoustics, as was pointed out by I.
Bronshiein and B. Konstantinov (ref. 7) and also by N. N. Andreev (ref.
8), since these magnitudes, belng of the order of AZ, may also contain
the first degrees of the succeeding approximations =5, 52, and &o

while their contribution will be of the same order as the contribution
from the squares of 1y, 5., and El.

The general expression for the energy density of a.compressible
medlum is

2
U = %’_ + PE (1.51)

where E 18 the internal energy of unit mass of the medium. The energy
flow N, computed on the basis of equation (1.11) with the viscosity and
heat conductivity neglected, is equal to

-

N = UV + pv (1.52)
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From the law of the conservation of energy,

X -
el divN =0 (1.53)

Thls equation 1s one of the fundamental equations of hydrodynamics
that 1s, equation (1.4) for the case of an ideal fluid (u = A = y = 0).

2

For an 1deal gas QE = p/(y - 1) (equation (1.38)); hence

7. eve v :
N = S v+ ’ZE‘I (1.52")
7-

For acoustics the initial medium is considered motionless (;b = 0)
The energy of the sound e = Uz - Pg + Ey and the flow of sonic energy

N, 1is obtained with an accuracy up to the order of magnitude A%, Terms

of the order of A3 rejected,

852 N
~ +div N, = 0 (1.53)

where

t2 = 3 y -1
4 > Z
0 > Y151
Inasmuch as
P =Py + (& 5,) L QEE- 82 4+
07 \ap) ~ 1t e Tl e 1
0 0
- 2 1 - 252 _ . - ‘
= pg + c0(6l + 62) t (7 l)c06l =Py *+ M+t (1.55)

2
(cO = (dp/dp) = v - po/pO is the square of the adiabatic velocity) and
Ty = cgél, equation (1.54) may be rewritten in the form (1.547)

PoES g c§ 5 L%
ezzz + +7-1(l+ 2)

ZQOCg

_)

chP > yieq &
0™0 2 1=1

= 3 (& + &) + )

2345



CYee

NACA ™ 1399 15

For a homogeneous medium at rest (56 = 0, ¢y = constant, and pg =
constant), a new form of the conservation law follows from equation
(1.53) in which the energy of the sound and 1ts flow are expressed only
in terms of the magnitudes characteristic of linear acoustics (nl 61,
and £.), not containing the second approximations (np, 55, and éz).
The equation of continuity expressing the law of the conservation of
matter (equation (1.12)), when written with an accuracy up to terms of
the order of A2, is

5(6l + 82)

— =t Pg div (&1 + 52) + div (6151) =0 (1.56)

This equation is multiplied by c%/(y - 1) and the result is subtracted
from equation (1.53). Inasmuch as 8, = nl/cg, equation (1.54) yields

le o
5ot div N, =0 (1.57)
where
2 2
_ P&l "]
1. 2
20000
- hed

The new expressions obtained for the energy of sound and the energy flow
51 are preclsely those which are applied in acoustics. In particular,
if the potential @ (& = - v8, m; = py(d0/dt), see equation (1.47)) of
the sound wave is introduced, then

Po 1 [0\
g = == (Vo) + = _ )
2 20202 ot
¥ = - eq %vm (1.59)

If, ag 1s often the case, the potential ¢ depends harmonically on the
time and is given In complex form (¢ is proportional to ei“m), the mean
energy in time and the mean flow In time are equal to

P
6l=._o vp. v(ﬂ'-{» (;? (p(p*
Z 2022
070

= hnDO
Nl = —4 (P* ") Ol W* (1'60)
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where the slgn * indicates that the conjugate complex magnitude should
be taken.

The expressions for the energy and energy flow equations, (1.54)
and (1.58), are physically equivalent because the medium is supposedly
homogenecus (in a nonhomogeneous medium equations (1.59) are not valid).
In order to show the equivalence of the two forms of the conservation
laws, one of which 18 a consequence of the other (under the given con-
ditions) the radiation of sound is considered. In figure 1 is shown a
sound source Q (solild body), a certain part of whose surface o exe-
cutes vibrations which excite sound waves. If the vibration started at
the time instant t = 0, at the moment t +the surface of the wave front
will be the surface F (see fig. 1). The entire space between this
surface and the source Q will be filled with energy radiated by the
sound. With an arbitrary control surface S enclosing the sound source,
the conservation theorem (1.53) is applied in integral form to the
volume V included between S and Q: In order to do this, equation
(1.53) must be integrated over the volume and_then, the theorem of Gauss
i1s used in transforming the integral of div N5 to a surface integral.
This Integral will consist of the integral over the surface S and the
surface of the source Q. Although some inconvenience 1s caused because
part of this surface is movable (o), it can easily be circumvented by
the consideration that the flow of energy through the surface of the
gource must simply be equal to the source Ws.

From equation (1.53) the following equation is obtained:

3,

2+ [T% (Z + &) + GLay (98)a |20 = W, (Lo61)

g

where n denotes the projection of E on the normal to the surface S,
Eo =t/n Ezdv is the total energy of the sonic field enclosed within
v

S; and the strength of the source Q 1is evidently equal to

Wy = f[Po(gl + gl)v + (ngl)\Jdo (1.62)
o

where V denotes the projection on the normal to the surface o. If
the control surface 1s passed outside the sonic field (for example, out-
slde the wave front F, but infinitely near it), from equation (1.61)

is obtained

dE, t
= W By =J; Wodt (1.63)

3343
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that is, the total radiated energy E, 1s equal to the work of the
source Q. On the other hand, if the second form of the conservation
law (eq. (1.18)) is treated in the same manner, the following equation
results:

dE, b
=Y By =J; Wodt (1.83")

from which it follows that El must be equal to E,.

From equations (1.54') and (1.58),

2
Ep - By = 5 . - f (8, + By)av (1.64)
'

where the integration 1s over the volume V. The integralh/a (6l + ﬁz)dv
v

is the total change of mass of gas in the volume occupied by the sonic
field. This change 1s equal to zero because the substance could not flow
out beyond the limits of the wave front; hence E; = Ep. If the integral
over the time period in equations (1.63) or (1.63") is taken over the
entire number of periods of vibration of the source and if the fact 1is

t
taken into account that in this case do - Py - L/; (El + gz)vdt is

equal to zero (since this integral is equal to the algebraically assumed
path of a surface element d& of the source @Q 1In the direction along
the normal to ® for a complete number of periods), and if the energy
obtained over part of a periocd is neglected,

t
E, = E; =J; dtj; dc(nl’gl)v = (112)y ot (1.85)

where (nlg)v is the mean value of the energy flow vector.

Both forms of the conservation law are identical when expressed in
integral form. Despite thg complete legitimacy and generality of the
expregsions for Es and N, containing the elements of nonlinear
acoustics, in linear acoustics 1t is entirely possible and more rational
ander the conditions of a homogeneous and stationary medlum to use equa-
tions (1.58) for the energy and its flow.

The equlvalence of equations (1.54) and (1.58) no longer holds if
the medium is nonhomogeneous and in motion. The equations for E, and
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ﬁz can eaglily be generalized to the case of a moving medium. Rather
complicated expressions are obtained which will not be considered
herein.

As will be shown 1n section 7, 1t 1s essential that relatively simple
expresgions are obtained for the energy density of sound E and energy
flow N resembling expressions (1.58) and containing magnitudes of only
linear acoustics in the approximation of goometrical acoustics in a non-
homogeneous and moving medium.

4. Propagation of Sound in a Nonhomogeneous Moving Med ium

In the presence of air motion the acoustical phenomena become more
complicated. Generally, separation of the acoustical phenomena, in the
narrow sense of the word, from the doubly nonlinear processes taking
place in a moving medium is not possible. Thus, for example, the flow,
pulsating in velocity if the frequency of these pulsations is sufficiently
large, acts on the microphone or ear located in it (not consgidering
phenomena connected with vortex formation on the microphone body itself,
gee section 28) as a sound of corresponding frequency although the velo-
clty of propagation of these pulsations has nothing in common with the
velocity of sound.

The relation between the pressure of these pulsations and their
velocity is nonlinear and also differs fundamentally from the relation
between the pressure in a sound wave and the velocity of sound vibrations.
Finally, the variable nonstationary flow itself can be a source of sound.
Phenomena of this kind will be considered later but this section will be
concerned exclusively with the problem of the propagation of sound. In
order for it to be possible to separate the sound propagated in the
medium from the acoustic phenomena arising in the same medium only as a
result of its motlion, this motion will be assumed to be "soundless”,
that 1s, that the motions in the flow are sufficiently slow so that

1
T > Z (1.66)

where T 1is the time during which appreciable changes occur in the
state of the flow (for example, the period of pulsations of the Tlow
velocity) and f 1is the frequency of the sound propagated through the
medium. This condition requires additional explanations. It depends on
the choice of the system of coordinates to which the motion of the flow
is referred.

In fact, a general translational motion of the medium has no signi-
ficance since it simply leads to a transfer of the sound wave. For this
reagon, it is gsufficient that equation (1.66) be satisfied in some one
system of the uniformly moving systems of coordinates.

3343
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If, for example, a flow 1s considered in which the propagation of
the velocities is stationary (that is, does not depend on the time, but
the velocity of the flow periodically changes in space with the period
1), then for this flow T ==, If this flow 1s considered from the point
of view of an observer moving with velocity u, the flow will appear to
him no7stationary, the period of the velocity pulsations being equal to
T = 1l/u.

The phenomenon of the propagation of sound in the two systems of
coordinates will differ only in the transport of the sound wave as a
whole with velocity u. Since for the present interest ls confined to
the propagation of sound, this difference, which can easily be taken into
account, is not essential.

When the statement of the problem ls broadened and a sound receiver
i1s congidered, entirely different results are obtained in these two
reference systems. In the first system, in which the flow 1is stationary,
the sound receiver would assume only one frequency f, the frequency of
sound propagation. In the second system, 1n addition to this frequency3
f the receiver would also receive the frequency of pulsations in the
flow, that 1s, f' = 1/%' = u/l and the combined frequencies fp =T +
nf', n =1,2,3,...

In the following, condition (1.66) 1s assumed satisfied in any of
the possible reference systems. The effect of the flow on the sound
propagation will then express itself in two ways: In the first place,
the sound will be "carried away" by the flow and, in the second place,
it will be dissipated iIn the nonhomogeneitles of this flow.

In the derivation of the fundamental equations of the acoustics of
a moving medium, the effect of the viscosity and heat conductivity of the
medium on the sound propagation 1s ignored. This effect, which can more
conveniently be taken into account as a correction, leads to the previous-
ly considered absorption of sound. The part played by these factors,
which determine irreversible processes in hydrodynamics, may be very
appreciable in the formation of the Initial state of the medium in which
gound is propagated. No less essentlal in this connection 1s the effect
of the force of gravity. Hence the theory of the propagation of sound
in a nonhomogeneous and moving medium must have as its basis the general
equations of motion of a compressible fluid.

According to equations (1.12), (1.13), and (1.24), these equations
are

g% + div(pv) = 0 (1.67)

5Actually it changes somewhat because of the Doppler effect; see
gection 5.
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- > 2
g%+[rot$,ﬂ+v%=-%R+§+vA’w7+‘SLVdiv§? (1.88)
* (v, v8) = o T tor (1.89)

where v = p/p is the kinematic viscosity of the medium. Further, equa-
tion (1.13) was supplemented by the tegm +§, which represents the effect
of the force of gravity. The vector g 1is the vector of the accelerapion

of gravity directed always toward the center of the earth. Thus p . g
1s the force of gravity acting on unit volume of the fluid.

Now let sound be propagated in a medium the state of which 1s des-
cribed by the magnitudes 52 P, P, and S, The iInitial state of the
medium (v, p, P, and S) is considered stable and the sound is considered
as a small vibration. All the previously mentioned magnitudes wi}l then
receive small increments: 2, n, 5, and o, regpectively, where & will
be the velocity of the sound vibrations; n, the pressure of the gound ;

%, the change in density of the medium; and O, its change of entropy
occuring on passing through a sound wave.

In order to cbtain the equations for»the elements of the sqgnd wave
in equations (1.67), (1.68), and (1.69), v 1is replaced by v + £, p, by
p+ 7,0, by P +0, and S, by S + o by restriction to a lineay approxi-
mation, terms of higher order relative to the small magnitudes &, n, §
and ¢ are rejected. Moreover, as has just been mentioned, the irre-
versible processes taking place during the sougd propagation are ignored,
which means that in the linear equations for £, t, 5, and o the terms
proportional to the viscosity (u or v) and the heat conductlvity
are rejected. On the basis of equations (1.16) and (1.5), the heat @
dissipated in the fluid likewise belongs to the number of magnitudes pro-
portional to p. By the method indicated,

%% + [rot v, EJ+ [rot g, $J+ Wv, £) = - %E A B} (1.70)

b

02

55 e - -+ -
St (v, ) + (g, 90) +p - dlvE+ B dlvy = 0O (1.71)
2+ (3, o) + (£,98) = o (1.72)

The equation of state, which 1is glven in the variables p and S,
is still to be added to these equations. TFor small changes of pressure
n, and in exactly the same manner as in the preceding section the follow-

ing is obtained:
t = c%8 4 hg; c2 =(§P-) , h =(§§) (1.73)
0 g o
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Equations (1.70), (1.71), (1.72), and (1.73) are the fundamental
equations of acoustics for a homogeneous moving medium (eq. (1.74)).
Their differences from those known in the literature lie in the fact
that they are true in a medium the entropy of which varies from peint to
point (VS £ 0) and in a flow in which vortices may exist (rot v # 0).

The approximations made in these equations, 1n addition to linearity,
congist in the fact that no account 1s taken of the irreversible processes
in the sound wave so that the sound wave 1s consldered an adiabatic pro-
cess. Thls fact is also expressed by equation (1.72). In fact, it fol-
lows from this equation that d(S + c)/dt = 0, that 1s, the entropy of a
given amount of substance remains unchanged with the passage of a sound
wave. The entropy of the substance at a given point of space may vary;

do/3t £ 0.

Tn this sense the sound wave 1s not isentropic. The linear charac-
ter of the equations requires that a small disturbance remaln small in
the course of time (stability of the initial state). Hence it is not
possible with the ald of these equtions to describe, for example, such
interesting phenomena as the "sensitive flame" of a gas burner, the
height of which changes sharply under the action of a sound wave.

In other respects the equations are entirely general and it is quilte
jmmaterial in what manner the initial state of the medium was formed. In
bringing about this state, the force of gravity, the heat conductivity,
and the energy flow from the outside (for example, the sun's heat) may
be of considerable significance. The effect of all these factors on the
sound propagation is taken into account in equations (1.70), (1.71),
(1.72), and (1.73) through the magnltudes ¥, p, p, and S character-
izing the initial medium.

The equation p = z(P, S) and equation (1.73) are valld only for a
single-component medium. In general, the pressure may depend not only
on p and S but also on the concentration of the various components.
In a complex medium it 1s necessary to take into account the diffusion
of the various components. The corresponding uncomplicated generaliza-
tion of equations (1.70) to (1.73) will be made in section 13, where the
cage of sea salt water is considered.

The choice of the thermodynamic variables e and S that has been
made herein is very convenient for general theoretical congiderations.
For final numerical computations, however, the variables p and T are
more convenient. For this reason, formulas are given expressing the mag-
nitudes (0p/dS), and VS entering the equations through the variables
p and T.

VS = (38/0T) VT + (38/3p)Wp
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on the basis of the known thermodynamic relations (GS/BT)p = cp/T (cp is
specific heat at constant pressure), (08/39p)qp = - (GV/BT)p = - Bp/p Bp
i1s the coefficient of volume expansion and By = = 1 oV .
p V\oT
P
Hence
Cp T B
VS = RVT - . g (1.74)
T e} PQ
)
[3p)]
Further,

(9p/M)g = (9p/38),(38/3m)  and (0p/0T) | = -(3p/3p)q (0 /oM),

The magnitude

C

dp __1(av o (8) 2 _%v 2
= - = = -PB_ and =8 = — ¢
(&p v2 \3T P &R)T °p

where c@ is the square of the adiabatic velocity of sound and

(GS/BT)p = cp/T. Thue

) -
(gg)p = SL . (1.75)

On the basis of equations (1.74) and (1.75) and the medium (cz,cp,Bp)
and its state (p and T as functions cf the coordinates) VS and
(ap/as)p can easlily be found.

*
The system of fundamental equations (1.70) to (1.73), even if, with
the aid of equation (1.73), one variable is eliminated (e.q., 8), contains
five unknowns and is therefore very compllcated.

Nevertheless, if a complete wave picture of the propagation of sound
1s to be obtained, these equations cannot be avoided. The main complica-
tion lies in the fact that, because the pressure in the medium is g
function of two variables (p and T or, preferably p and S), then
even in a medium at rest where not only vortices of the flow are absent
but where, in general, there is no flow, the right side of equation (1.70)
will not be a complete differential of some function and therefore the

sound will be vortical (rot E % 0). Considerable slmplifications are

obtained when the changes in p, P, and S are small over the length of
the sound wave. Geometrical acoustics are considered in greater detall

in the next chapter.
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For the present, certaln special cases of the general system which
are not reduced to the approximations of geometrical axoustics are
consldered.

The most important special cage will be the one for which the
initial flow is not vortical (rot v = 0) and the entropy of the medium
ig constant (VS = 0).

Under these conditions the pressure in the medium 1s a function
only of the density of the medium so that vyp = GZVD. From equation
(1.72) 1t follows that for VS = 0, o = O so that the sound will be
propagated isentropically. Then

1 = ¢éd

If the potential of the  sound pressure is introduced

n-= (1.76)

1 I E

the right side of equation (1.70) will be equal to -VII. Therefore the
velocity potential of the sound vibrations ¢ can also be introduced

7 = -vo (1.77)

The sound will be nonvortical in this case. From equation (1.70)

T e = a

=I1 = + v = ¢ R

5 St G, Ve T (1.78)
Substitution in equation (1.71) of the magnitude II (for which

olifot = (cz/p) . (®/3t), Vit =8 . V(c?/o) + (c2/o) - V8) in place of &
yvields the following equation for ¢:

d“e _ 2 do (2 2
v i ot -« Ag + (VI, Vo) + it (v, V log c2) (1.79)

where [l 1s the potential of pressure (heat function) of the initial
flow

N = f%‘l (1.80)

Equation (1.79) was derived by N. N. Andreev and I. G. Rusakov (ref. 10)
without the last term, which was erroneously omitted. This equation
exhaustively describes the propagation of sound in a medium in which the
entropy is constant.
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A. M. Obukhov (ref. 11) gives an equation which permits an approxi-
mate consideration of the presence of vorticity of the flow but never-
theless makes use of one function, the "quasipotential"™ . This quasi-
potential 1s Introduced by the equation

t
£ = - V‘J’+f [rot v X W/]dt (1.81)
The quasipotential may be introduced only for sufficiently small vorti-
city of the initial flow, that is, the assumption must be made that
Q = |rot ¥| < w (1.82)
where w 1is the cyclical frequency of the sound.

Moreover the assumption is made that* v/c << 1, so that the initial
flow may be taken as incompressible (div v = 0). Finally the pressure

of the medium is assumed as a function of the density of the medium only.

Since Bp/Bp 1s considered by A. M. Obukhov as the adiabatic veloclty
of sound, this implies the assumption that the entropy of the medium is
constant. In connection with this agsumption, the question arises as to
what extent the assumptions of_the presence of vorticity (rot ¥ £ 0) and
the constancy of the entropy (VS = 0) generally apply together. The
possibility is not excluded, however, that the influence of the vortices
on the sound propagation 1s more effective than the influence of an en-
tropy gradient. These hypotheses are assumed satisfied and T 1s sub-
stituted from equation (1.81) into equation (1.70) and, since W = 0,
the right side of equation (1.70) will agaln be = - VII. After simple
reductions, the equation, which was found previously, 1s obtained.

= _dy
I e (1.83)

In this case, however, it 1s true only approximately with an accuracy to
22/e?, Qfw + V/c.

Expressing % in equation (1.71) in terms of II and V¥ gives the
equation of A. M. Obukhov:

a2 d
;—% = CBAW + (dlp, wy) + E% (3, V log cz) 4
t

t \
czf (v, AV)dt - (VHO, f [rot 3, V\llet) (1.84)

3343



CPee

vU=-4

NACA TM 1399 o5

This equation holds with an accuracy up to Q/w, Q/w j%gl (x = w/c). The
- 96

magnitude A¥ = - rot rot v. In this equation, the terms of order vz/c2

can not be taken into account because in the approximations the assumption

was made that v/c << 1.

5. Equation for Propagation of Scund in Constant Flow

In many cases the vglocity of the flow v may be sultably separated
into the mean velocity V and the fluctuating velocity u. The effect
of these two components of velocity on the sound propagation may be dif-
ferent. The mean velocity of flow produces the "drift" of the sound
wave while the second variable part of the flow velocity leads to the
dissipation of the sound wave. This phenomenon will be considered in
more detail later. For the present, attention 1s concentrated on the
effect of the mean flow velocity and the equations are considered for
the sound propagation, with the variable part of the flow veloclty u
ignored. The sclution obtained under these conditions is of interest
not only as a first step toward the approximate solution of the complete
problem with the velocity fluctuations belng considered but 1s of value
in itself, especially for the theory of a moving gound source.

In order to obtain an equation for the propagation of sound in a
homogeneous forward moving medium, it is sufficient to put VI = 0
and vlog ¢2 = O in equation (1.79). Expansion of the total derivative

with respect to time [dzm/dt = (a/at + (;,V)(Sw/at + (;,V¢))J ylelds
o v V) vV9) _

Am‘-lg——- ( R ) __z_____. 0 (1.85)
ct ot

Q/

If the X-axis is taken in the direction of the mean velocity and B
is set equal to V/c,

a2y 2P0 Fo P 1 % 28 % :
(1 B)8x2+5y +_'—2_§t_'03£'&=0 (1.85")

For the system of coordinates &, n, and ¥ moving together with
the stream & = x - Vt, 1 = y, and ¥ = z, equation (1.85') is transformed
into the usual wave equatlon

>l a% Xy 1
- —= .. — =0 1.86
&,2 O aé 2 ate ( )

4

The result of A. M. Obukhov is probably more rigorous and could
have successively been obtained as the second approximation of geometri-
cal acoustics (see section 7).
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as expected, since in this system of coordinates the medium is at rest.
Certain important solutions of equation (1.85') are now available.

A plane sound wave is first considered. In the system of coordin-

ates &, n, and Y at rest relative to the air (hence for an observer
moving with the stream), this wave has the potential

alE +a,n + a5§

( | iwlt - = 5 . 5
®(&,n,%,t) = Ae ; + + =1
’ al ag a3 (1.87)

where a,, 0p, and az are the direction cosines of the normal to the
surface of the wave; w the frequency of the osclllations; and c, the
velocity of sound. Equation (1.87) is a solution of equation (1.86).
According to the previously mentioned transformation, the solution of
equation (1.85') ia immediately obtained if & 1g replaced in equation
(1.87) by x - vt, n by Y, and Y by z

i [:th - %) (cxlx +ayy + OLSZ)]
o(x,y,2,t) = Ae (1.88)

where

w' = (l + ¥ Gl) (1.89)

[}

Thus the sound frequency in a stationary system of coordinates will not
be w but w'.

This change of the frequency of the sound is the acoustical Doppler
effect. The effect has an exclusively kinematic origin; 1t depends only
on the choice of the system of coordinates. The entire difference in the
propagation of a plane wave in a moving medium as compared with a sta-
tionary one reduces to this kinematic effect.

Later the Doppler effect will be considered more fully; not only the
motion of the observer of the sound will be taken into account but also
the motion of the sound source 1tself, which at present does not enter
explicitly in the computation.

A second important form of the solutions of equation (1.85) is pre-
gented by sound waves dlverging from a certain small point source of
sound (or, on the contrary, converging to 1t; in the latter case a sound
"sink" 1is being dealt with, which is a very artificial but mathematically

useful concept).

The mathematical expression for the potential of such waves is a
goneralization of the potential of spherical waves for a medium at rest.
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This potential of spherical waves is a solutlon of equation (1.86),
having the form

Xy = —cli v - AfeR 42+ %2 (1.90)

where F 1s an arbitrary function. The solution with the minus sign is
glven by waves diverging from a sound source located at the origin of
coordinates (£ = 4 = ¢ = 0) and the solution with the plus sign represents
the same waves converging to a sound sink at the origin of coordinates.

If F 1is & harmonic function, the following is obtained from equation

(1.90)
tof £2E
1m(tic)
e

r

Xg = (1.90")

that is, a spherical harmonic wave with frequency w. In & moving medium
in which the propagation of sound is described by equation (1.85') in-
gtead of solutions of the form of equation (1.90), the more general ex-
pression is obtained®.

Fit + g
x = R* (1.91)
where
*
R = Ef_4$¥5t, R* = 1/;*2 + y2 + Zz, x* = X (1.92)
1 - Bz 1 - BZ

With the substitution of X from equation (1.91) into equation (1.85), it
ig not difficult to show that equation (1.91) is in fact the solution of

equation (1.85), which moreover transforms into a solution of the form
of equation (1.90) for V =0 (B = 0).

The solution (eq. (1.91)) for a moving medilum thus has the same
value which equation (1.90) has for a stationary medium; it represents
waves diverging from a point source or waves converging to a sink.

SThe origin of this solution 1s clarified in detall in section 15.
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6. Generalized Theorem of Kirchhoff

In the theory of the propagation of waves, an important part is
played by the theorem of Kirchhoff, which permits expression of the
oscillations at any point of space In terms of the osclllations at the
surfaces bounding the space considered (1ncluding also the surface at
infinity). This theorem is derived, for & moving medium, starting from
equation (1.85') (ref. 12). This equation, If the coordinate system
x*,y,z contracted in the x-direction is introduced

3343

X* = X 5 Y=3; z =2 (1.93)
5 v
N1 - B

‘assumes the form

1 % 2B 1 % _
A‘D-CB 7 I_BZ-C—W_O (1.94)

where
A = 2/xx2 4 R/3y2 4 R [372

The singular solution X (eq. (1.91)) likewise satisfies equation (1.94)

ax - L. X ap 1 8%
Cc

02 atz m atax*

The solution X contains the arbitrary function F which, because of
later utilization of the solution for the proof of the theorem of in-
terest, 1s specialized.

=0 (1.95)

(1.96)

[
joe]
=%
v+
w_ =
GSY e

where R 1g the distance Al;*z + y2 + 2% from the point P, with the
coordinates x;,yp,zp, at which the potential ¢ is to be determined to

an arbltrary point of the space Q, with the coordinates xa,yQ,zQ, 80

that X = xQ - x;, ¥y =73q - Ips and 2z = ZQ - Zp.
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The function ©&(Z) 1s determined such that

b
f £(E) - ®(E)AE = £(0) if b >0, a< 0
; (1.97)
b
f f(E)s(E)ag = 0 if 2 >0

a a

Equation (1.97) is assumed valid for any function f(&) so that
8(£) 1is everywhere equal to zero except at the point & = 0, where
8(£) = ». Hence &(t + R/c)/R* represents a converging spherical
impulse (shock) concentrated about R = - ct.

A certain surface S enclosing the volume & in the space x¥*,y,z
is considered (see fig. 2 where the surface S 1is formed by two sur-
faces S; and Sp; the volume & 18 crosshatched).

After equation (1.95) is multiplied by ¢ and equation (1.94) by
X, one equation 1s subtracted from the other and the result 1is Integrated

over the volume & and over the time *t; to t,. Integration over the
four-dimensional volume Q(tz - tl) ylelds

% t

2 2 2 2x

f dtf‘dsz(mx-xm)+i2f at dSEX'-a—g-cv-é—z--
ty c” Yty % 3t

t
2B 1 2 32X 2@
= °© f o f m(‘” Stoex atax*) =0 (1.98)
1 - gl 5

Application of Green's transformation results in

f dg (PAX - XAQ) = f dS((p gg- - X gg) (1.99)
S

where O/dn denotes the derivative along the external normal to the
surface S enclosing the volume . At the point P the transformation
(eq. (1.99)) will fail because at this point X becomes infinite. The
point P 1is surrounded by a small surface I and the volume AR
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enclosed by it is excluded from the volume of integration @ 1in equation

(1.98). The surface I (see fig. 2) is considered as part of the sur-
face S. The normal to the small sphere Z 1is denoted by N and di-
rected toward the interior of the volume. If Green's transformation,

equation (1.99) to equation (1.98), is applied, the following results:

t t
fzdtdeééﬁx-X%):fzdtf dS((P%?—X%)+
1 2 d {4 ov oX\_
L0 [ g2
¢ t Q'
52

t
2 1 p2 %X 4
—=:f dtj;, (o 55 - ¥ sh) (1100)
qll - B 1

t

1

The second integral on the right permits carrying out the integration
with respect to time

t
_ 2 d d0 X
Iz*J; dtfd‘z'a?("gr"a‘
1 2

t

d AW
= d@(ﬁ =2 _ 9 1.101
J;. =R (1.101)

But 1f %3 tends to -= and t, to += 80 that t; + R/fc <O and

tz + R/c >0, then both X and OX/dt at t; and t, are equal to
zero on account of the form chosen for X; hence I = 0. The first in-
tegral on the right is considered

t
2 d/1 1 3R 1 &
I =f;1 " f ds[“’sa(ﬁ)s OB R TR R ¢] (2-102)

Integration by parts of the second term with respect to time and use of
the property of & (eq. (1.97)) yileld

3343
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%RL*%%@‘% ] (1.103)
C

where ¢, 0¢/on, and Jp/Ot are taken at the instant t = - R/c.

In a similar manner the third integral on the right in equation
(1.100) gives

t 2
- 2B .1 e d2X d%p
s z ./’:1 at f d&(“’ Stoxx T X Stox*

2
1 B
t
- 2B 1 o ox\
= k/'1 dt NIN ds sy ® St
1 - g2 ty
1,
2 of do
ft‘ dtf‘m&z(m")
1
26 1 f dx S0 5(“15)*‘,2
B c ® 3t 95 - \/\ A% xF R*
1 - g2 s * t
_ 2 1 ¢ 1
- ____E__; E\j; (EE) + 25 45, (1.104)
1 -8 t=-R
[¢]

=
where de is the projection of the area H dS on the flow velocity V
(on the x-axis). The integral in equations (1.100) on the left is trans-
formed exactly as the first and, since in this case B/BN is ldentical
with O/JR¥,
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11 R (9¢
C ¥ . *¥\oi (1.105)

and, since dZ = 4nR*2 . dR*, as the radius of the sphere R* approaches
zero, the following is obtained:

Iy = - 4nQ, (1.105")

Thus on the left the value of the potential at the polnt P at the in-
stant of time t = O 1is obtained. Since this instant is arbitrary, 1if

the time origin is everywhere shifted forward by t and all the inte-
grals I;, Io, and Iy are collected, the potential at the point P

at the instant of time t wlll be

m“f{P |- 3(Fw -

o
ER* 8%‘] ds -

in "\/‘:‘_iL_ S f R% gg]dsx (1.106)

where the brackets indicate that the magnitude enclosed by them is taken
at the instant of time t - R/c.

For Vg =0 (B=0), R* =r and R =1r and this equation trans-
forms into the usual equation of Kirchhoff for a medium at rest.

If the potential depends harmonically on the time so that
¢ = yolot (1.107)

3343



Chee

vu=a

NACA TM 1399 33

then substitution of equation (1.105) in equation (1.104) yields for the

amplitude
o o-LKR 3 [o-1KR
vp 'Gf{%? v (5 )}ds‘
-1KkR
_Eifk f\y e asy (1.108)

4n&/l - 52

where k = w/c 1is the wave-number vector. If, from the nature of the
physical problem, it may be assumed that the disturbances giving rise to

the vibrations start within the surface 53 and not at an infinite time
back, they do not have time to be propagated to the surface S, at a
great distance from S;. For this reason, if S, 1s shifted to infinity,
the values ©, 0®/on, é¢/6t can be assumed equal to zero in it. The
volume § then takes up the entire space with the exception of 87 1In
the interior. If the presence of an infinitely removed surface is "for-
gotten," it is natural to call the normal n the interior normal since

it is directed inwards from the surface S1 within which the sources of
vibration are concentrated according to the present assumption. Under
this condition equations (1.104) and (1.106) may be assumed to give the
expression of the potential at any point of space in terms of the values
¢, %/dn, and d¢/dt on the surface 5, within which (or on it) the sound
sources are concentrated.

In conclusion, a certain generalization of this theorem is considered
for "volume" sources of sound. It 1s assumed that equation (1.94) has a
right side which is considered as a "volume sound gource.”" The strength
of this source is denoted by Q. Fquation (1.94) can then be written in
the form

1 e 2B 1 Rg

o2 ot2 [ BZ c otox*

A® - = - 47Q (1.94)

Such equations are encountered, for example, in the problem of the dissi-
pation of sound by a turbulent flow (see section 12). If the same opera-
tions which were applied to equation (1.94) are applied to this equation,
an expression 1s obtained for ¢ differing from equations (1.106) and
(1.108) by a volume integral. The additional term, on multiplication of
equation (1.94) by X, will be

b
2
I4=-4nj; dtJ‘dSZQ' X (1.109)

1
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Integration over t yields (on account of the ® function form of X)

" :
I, = - 4n f dg Qt—-B = (1.109")
C

Hence, 1in place of equations (1.106) and (1.108), there are obtained

% (t) - f%dmﬁ-f{%{%}%%)[wh

e Sl e - & =
1-8

2 f Eﬁ{%%]dsx (1.106")

e -1kR
- 0 1 o 2 _
¥p R* dg + 4 yf‘{:Eg T OR*

and

1 2ipk o~ LXK ,
v = f(p = dS, (1.108")

if the strength of the source depends harmonically on the time
Q = quel¥t (1.110)

The theorems derived herein are used in the theory of wave propagation
from a moving source, in particular from an alrplane propeller, and in

the problem of the occurrence of vortical sound in the motlon of bodies
in the air.
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CHAPTER II
PROPAGATION OF SOUND IN ATMOSPHERE AND IN WATER

7. Geometrical Acoustics

In the study of the propagation of sound in the atmosphere or in
water, the state of the medium generally changes little over a distance
equal to the length of the sound wave X. In the background of this
slow change of state of the medium there can also exist smaller changes,
but these give rise to secondary effects which may be considered sepa-
rately (see section 12). The main features of the sound propagation
picture are determined by the slow changes in the state of the medium
(for example, changes in the force of the wind and in the temperature
and density of the air with increasing distance from the ground surface).
Under these circumstances the application of the methods of geometrical
acoustics is suitable. The fundamental equations of geometrical acoustics
are derived in this section (ref. 13). A start will be made from the
fundamental equations of the acoustics of a moving, nonhomogeneous
medium (section 4). These egquations are

-
g% + [rot‘gx;] + [rot ng] + (v, E) = - %? + %%? (2.1)
g_i’+(2,vp)+(3, V6)+p-divg+5-div_\;=0 (2.2)

Ao > 4
ST+ (¥, 90) + (€, V8) = 0 (2.3)
%= %5 + ho (2.4)

The change in '3, p, p, and S 1is assumed small over the distance
of a wavelength of sound. Use is made of this fact for the construction
of an approximate theory of the propagation of sound:

Z-%, - el® =gl 5=0el? o= oge’®  (25)

P =wt - kg® (2.6)
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where w 1is the frequency of the sound; kg = w/co = Zﬂ/xo is the

wave number in the medium, the state of which is assumed normal (co is
the normal velocity of sound); and ko® 1s the phase of the wave. The
magnitudes Eb, T 8p, and o0p are assumed to be slowly varying
functions of the coordinates and, possibly, of the time. The number ko
will be assumed large so that the phase kog, on the contrary, varies
rapidly. The solutions for 20, T 60, and % will be sought in the
form of series in the reciprocal powers of the large number ik.:

-1 O
E PN
4 — ! O,._. —_ .—O ¢ e o
6 8 (2.7)
— 1 « e o = ' - « .
60 = 60 + iko + %9 OO + iko +

Substituting equations (2.5) and (2.6) in equations (2.1), (2.2), and
(2.3) and making use of equation (2.4) result in

iky {az, - VO Zol. v (2.8)
0 0 o |~ '
. q Bq T o '
lko{c—z TfO - C—z- OO - Q(EO, V@)}: b4 (2-8 )
1kpadp = by (2.8")
where
q = CO - (\;, V@) (2-9)
o,
> 0 * + b = > 2
b= - 5Tt [{Oxrot v] + [vxrot EO] - V(v, EO) -
gx Ty - ho
Y7o, V_12> . LB_O (2.10)
P o c
ont do
1 °%9 n %9 f» _1 1
by = ‘—BW‘_ZW'(V’V?)(’IO - hoo) - 2 [V, g -
c ¢

- - Ty - hog,
V(h) CIO)] = (Vp, EO) - p . div EO e div :\7’ (2.10')
c
BGO - I~
bg = - 50— - (v, vog) - (€, V8) (2.10")
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—>
Substituting Epn, mg, and oy from equations (2.7) into equations (2.8)
and (2.8') and collecting the coefficients of the same powers of iko

give for the zeroth approximation (the coefficient of the zeroth power
of ikg)
]‘['
-, 0
Uy -V - =0 (2.11)
1 ' -1 '
a/c?(ng - o) - p(Eys v8) = 0 (2.11")
qog = 0 (2.11")

and for the first approximation (the coefficient of the first power of
ikg)
0

"

a1 s nd
- P
%0 = V8 * 3 (2.12)
a/c?(ny - hof) - o(ESs ve) = by (2.12")
q - 06 = bé (2.1211) .

-+ -
where b', b4, and bg are the values of b, b4, and b5 on substi-
-
tuting in them the zeroth approximation of &Q, né, and 06 from
equations (2.11), (2.11'), and (2.11").

From equation (2.11"), it follows that o4 = 0, that is, in the
zeroth approximation of gecmetrical acoustics the sound is propagated
without change of entropy (isentropically).

Solving equations (2.11), (2.11'), and (2.11") gives, in the first
place, the equations connecting the velocity of the oscillations with
the pressure

- T[é
A= U0 ¢« —
s Py (2.13)

and as the condition of the simultaneity of equations (2.11) and (2.11'),
the equation of the surface of constant phase (@ = constant) is

|ve|2 -
o2 (2.14)

For v = 0, as is seen from equation (2.9), q2/c2 = c%/c2 = pz,
where y 1is the refraction index for sound waves. The equation
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IVd2 = uz is called the "eikonal" equation. For v ¥ 0, the ratio
q/c may likewise be considered the index of refraction of the medium,
but it now depends also on the direction of propagation of the waves.

The situation is similar to that in crystal optics, but more com-
plicated because for acoustics the medium is not only anisctropic but
also nonhomogeneous, since the position of the axis coincides with the
position of the wind or flow which changes from point to point. Sub-
stituting in equation (2.14) the value of q from equation (2.9) and
solving equation (2.14) for |ve| = 9@/0n, where J@/on denotes dif-
ferentiation along the direction of the normal to the surface of con-
stant phase (® = constant), give

€0

-9 -

where v, 1s the projection of the velocity of the wind on the normal
to the wave. With 5@/Bn known, the phase velocity of the waves Vg
can be determined. The equation of the moving phase surface is

$ = wt = kKg® = constant. Differentiating this equation with respect to
time results in

d® dn o0
m_kogr—loazw-koyn\ffzo (2.16)

" On the basis of equation (2.15) there is then obtained
Vf = C + Vp (2.17)

that is, the phase velocity of the waves is equal to the local velocity

of the sound plus the projection of the velocity of the wind on the normal

to the wave. This kinematic relation is clarified in figure 3; equation
(2.17), which was obtained as a consequence of the strict theory, was
put at the basis of a geometrical theory of sound propagation as one of
the initial assumptions by R. Emden (ref. 14).

It is important, however, not only to find the geometry of the wave
field but also to compute the magnitudes characterizing the intensity
of the sound. The equation for the determination of the sound pressure
g 1s obtained from the equations of geometrical acoustics (2.11) and
(2.12). This magnitude is generally measured in a test. The equations
of the second approximation (2.12) are used to obtain this equation.

The left 81des of these equatlons agree with equatlons (2.11). If the
notations 56 (xl, xz, x3), “O = X4, and OO x5 are introduced
and equations (2.11) are written in the form

5
E 8 + Xk = O i=1,2, 3, 4,5 (2.18)

k=1

35343
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equations (2.12) can be written in the form

; ajx * xp=b; i=1,2,3,4,5 (2.18)

By a known theorem of algebra, equations (2.18) will have solutions x;

only when the right sides are orthogonal to the solutions 1y, of the
adjoint system of equations:

S
E 8ix * yx = O where &y = I (2.19)
k=1

The condition of orthogonality is

S

::E:'béyk =0 (2.20)

k=1

With a;, determined from equations (2.11), (2.11'), and (2.11") and

aj) transformed, y, 1is obtained from equations (2.19) in the form

- h
y=p-9, y4=4 ¥5=-754a (2.21)
C

=
Substituting b, b,, and bg from equation (2.10) in equation (2.20) and
making use of equation (2.13) give the condition of orthogonality (eq.
(2.20)) in expanded form:

Sné -+ -> -
2 5= + 2n) div Vg + 2V¥ng - (Vg, Vilog p qcf) + n§ =0 (2.22)

. -+
where the velocity Vg is given by (see fig. 3)
-

Vg = cn + v (2.23)

Z being the unit vector along the normal to the surface of constant
phase.

-
Dropping the strokes of =4 and (6, because the zerotl

mation is concerned in what follows, equation (2.22) is multiplied by
. and an equation for the square of the pressure amplitude is obtained:

approxi-
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2
3 -+ e
a—’t‘— + div (Vgn®) = (Vg, ¢ log pgc?)x? (2.24)

which together with equation (2.13)

E=w5§ (2.25)

completely solves the problem of oQtaining the sound pressure = and the
velocity of the sound vibrations E. Equation (2.24) may be considered
also as.a certain conservation law. In fact, the mean kinetic energy of
the sound vibrations T 1is defined by the equation

3343

T=z(o+o)F+E)E-BZ L R @7 (2.26)

o

where the remaining terms are rejected either as magnitudes of third-
order smallness or as magnitudes which within the framework of the lin-
ear theory should, on the average, give zero (for example, pf%, 25).
Since & = n/cZ (compare eq. (2.4)),

1 2 2 ﬂ2
T=3|ve|” - X+ (7 ve) (2.27)
2 2 2
Pq pgc
Adding the mean potential energy of the second order U
2
v=z 2 (2.28)
pc
results, on the basis of equations (2.9) and (2.14), in
1!2 . CO
e=T+ U= 5 (2.29)
pqc

If equation (2.24) is divided by pqcz/co, then after simple reductions,

32+ aiv(elg) = o0 (2.50)

that is, the law of conservation of the average energy in geometrical

acoustics. This law, like the law for €1 and .ﬁl (see section 3), is

remarkable in that it contains only magnitudes characteristic for linear
acoustics. It is valid for any nonhomogeneous and moving medium pro-
vided only that the length of the sound wave is sufficiently small that
the approximations of geometrical acoustics are applicable.
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-
The magnitude €Vg is evidently the mean energy flow
¥ = evs (2.31)

It follows immediately that the sound energy is propagated with the

~p
velocity Vg = en + V, different from the phase velocity Vf. The veloc-

-
ity Vs is called the ray velocity. This velocity is equal to the

geometric sum of the local sound velocity ¢n and the wind velocity J.
It coincides with the velocity of weak explosions according to Hadamard
(ref. 15).

On the basis of equations (2.23) and (2.25), the energy flow may
also be represented in the form

z c

> -+ nc - 0

N = (KE +—§V) . ? (2-31')
pc

For v =0, q = ¢y; and the previously derived (section 3) equation for
—’

J

- - -

the flow N ng 1s obtained (the expression Nl = ngl differs, how-
=

ever, from ﬁ = n§ since the 1attg; vector represents the average value
in time of the energy flow while Nl is its instantaneous value). If
the process is stationary, so that the mean energy of' the ,sound field
does not change (at least where the sound field has already filled the
space), from equation (2.30),

div (eVS) =0 (2.30")

From this equation it follows that, if tubes are constructed the lateral
surfaces of which are formed by lines along which the ray velocity is
directed ("ray tubes," fig. 4), the product g - Vg,s(s 1is the cross
section of the tube) is constant

eVgs = constant (2.32)

Substituting the value of ¢ from equation (2.29) gives

2
2, . 2 . _pac
n VSS = n{Vg 81 = (2.33)
P19:¢1

where Ty Vsl’ S5 Pys Qs and ¢ are values of these magnitudes at

1
any chosen section of the tube. This equation permits computation of

the pressure of the sound at any part of the ray tube as soon as it is
known at any section of it. To obtain the geometry of the ray tubes,

however, a solution of the problem of geometrical acoustics (equation

of the eikonal (2.14)) is required.
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8. Simplest Cases of Propagation of Sound

A. Propagation in an isothermal atmosphere. - In an isothermal
atmosphere at rest, the velocity of sound is constant (since it depends
only on the temperature). Thus c = cog = constant. The magnitude
q = cg (since ¥ = 0). Hence, from equation (2.33) for the conditions
considered,

7és = ﬂgsl . p/p1 (2.34)

In the special case of a plane wave, the cross section of a tube is
constant (s = sy) and

no= oy - (p/pl)l/z (2.35)

that is, the pressure of the sound is directly proportional to the square
root of the density of the medium. The ratio p/pl in an isothermal

atmosphere is determined by the barometric formula

p/py = eE (2.36)

where wx = M'g/RT, H is the altitude, M 1is the molecular weight of the
air, g is the acceleration of the force of gravity, R 1is the constant
gram molecular weight of the gas, and T is the temperature. From
equations (2.35) and (2.36) it is seen that the pressure will decrease
with altitude by the exponential law.

If the wave is not plane but spherical, the cross section of the
tubes increases as the square of the distance from the source r2. Hence
for a spherical wave in place of equation (2.35),

T= oMo ;% (p/ol)l/2 | (2.35")

The velocity of the sound vibrations 2, in contrast to the pressure,
will increase. In fact, for a plane wave V® = 1 (@ is the unit vector
in the direction of the normal to the wave) and therefore from equations
(2.25) and (2.35) there follows

- pi¢ 1/2 i 1/2
2B S NNOYARLVCIN SR W ST (2.37)
Pey P1%1
The mean energy flow 5
X
Ve =n = (2.38)
P11

remains constant.
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In a similar manner, for the spherical wave,

> ¢ r 1/2
=10 L . L (py/p) / (2.37)
pyCy T
I'z 1'(2
- -
N=ng=3—% L (2.38")
r chl

S
where n 1s again the unit vector along the normal to the wave, that is,
in the direction of a ray issuing from the source.

B. Case of the presence of a temperature gradient. - Let the tem-
perature T Dbe a function of the altitude y. The velocity of the
sound ¢ will then vary according tc the law

c =,\I . % ’\PTT (2.39)

and the index of refraction of the sound wave u will be

& T
B o= 0 0 (2.40)
c T

The equation of the surface of constant phase (equation of the
eikonal) in the absence of wind will, according to equation (2.14), read

2 2 T
G - (g - e

(The x-axis is directed horizontally (fig. 5) in the plane of the sound
ray and therefore it is assumed that ®& does not depend on z.) The
cosine of the angle ¢ between the x-axis and the normal to the wave
will be

2
a@ a@)
cos = z2.42
® 3y ( )
Let 5@/5x = cos @qp, where is the value of ¢ for y = O, that is,

on the ground surface, where T = TO. From equations (2.41) and (2.42),
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cos ® = cos Og * %l (2.43)
0

From this equation it is seen that, if, as is generally the case,
the temperature drops with the altitude, cos @ will decrease in absolute
magnitude and therefore the ray will be deflected from its initial direc-
tion upward (fig. S). By use of equation (2.43), if the temperature
distribution over the layers is known, the entire curve of the ray can
be constructed.

C. Propagation of sound for a stratified wind. - The case of a
medium of constant temperature and density wherein there is a horizontal
.wind (let it be directed along the x-axis)} the force of which varies
with the altitude is now considered.

Let the velocity of the wind be
v = v(y) (2.44)

Then according to equation (2.49), the magnitude q is equal to

Q=g - viy) 2 (2.45)

and on the basis of equation (2.14), the equation of the eikonal will be

c
where Y(y) = v(y)/co.

The velocity of the wind at the ground surface itself (y = 0) will
be assumed equal to zero (y(0) = O). Assuming, also, as in (B), that
the initial angle of the normal to the wave is equal to ®0> BG/BX is
set equal to cos @0 and from equation (2.46) is obtained

cos @g
cos @ = T = cos o] (2.47)

From this equation it follows that if the ray6 is directed along the
wind (ry * cos ?0 > O), then as the velocity of the wind increases with

61n the presence of a wind, as was already pointed out, the line
of the ray differs from the line of the normal. Since, however,
v/c<l, this difference is not large.
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the altitude, cos ® increases in such a manner that the ray is deflected
toward the earth (fig. 6), while a ray traveling against the wind is
deflected upward. This upward deflection is one of the reasons for the
impairment of heating in a wind. Consider a ray which in the absence of
wind almost glides over the surface of the earth (fig. 7).

In the presence of a wind the force of which increases with the
altitude, this ray is deflected upward and passes by the receiver P.
This does not mean, of course, that at P nothing will be heard since
other rays will arrive there, but the intensity of the sound will be
considerably weakened (small number of rays). If the force of the wind
drops with the altitude, the same conclusion will hold for the propaga-
tion of the sound along the w1nd direction.

In those cases where not only the force of the wind but also its
direction varies from layer to layer, the picture of the sound propaga-
tion becomes considerably more complicated because the rays will be
curves of double curvature.

9. Propagation of Sound in a Real Atmosphere. Zones of Silence

Under the conditions of the real atmosphere all the factors con-
sidered (wind, temperature gradient) act simultanecusly and in a very
complicated manner since the variation of the temperature, force, and
direction of the wind may be very different. In the general case the
direction cosines of the normal to the wave a, B, and Y are again

determined from equation (2.14). Since co/c = 1/TO7T and
-
4 =2C¢o - (V@) V))

_ 0 ,\I‘
© Ox
g% ’\’T > (2.48)

V®V')
u V@v

For their determination, it is thus necessary to know the function

® from equation (2.14).
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As could have been seen from the equations of the preceding section,
an essential part in the propagaetion of scund is played not so much by
the temperature and the force of the wind as by their change. It is
found that negligible gradients of the temperature or of the wind force
lead to considerable curvature of the sound rays.

Several illustrations borrowed from the paper by R. Emden (ref. 14)
are presented. In figure 8 is represented the case of the propagation
of sound in an atmosphere in which the temperature drops by 6.2° in 1
kilometer; on the ground surface up to an altitude of 370 meters there is
assumed a calm, but further on the velocity of the wind increases by 4
meters per second per kilometer. In this case there is formed a wide
"zone of silence"” 1lying to the right of the sound source. The sound
reaches the surface of the ground only at a considerable distance from
‘the sound source (beyond 159 kilometers). Similar regions of sound
shadows are seen in figure 9 where sound rays are shown propagated in an
atmosphere in which up to a height of 910 meters the temperature drops
by 3° while the wind increases by 2.13 meters per second, and higher up
the temperature drops by 3.65° in 1 kilometer and the wind velocity
likewise drops by 3.28 meters per second in 1 kilometer. Zones of silence
were first observed in the last war when it was found that the audibility
of an artillery cannonade was greater at places further removed from the
sound source than in its neighborhood.

Very brilliant and detailed computations of the propagation of a
sound-wave front in a nonhomogeneous atmosphere in the presence of wind
may be found by the reader in the work of S. V. Chibisov (ref. 16) in
which examples of zones of silence are likewise given.

The velocity of propagation of weak explosions (according to Hadamard)
which figures in the work of Chibisov agrees (ref. 12) with the ray
velocity Vg introduced in section 7. Since it is not possible to enter
into more detail in regard to the computational problems of air seismics,
the discussion of these problems is limited to the illustrations given
and to the references cited.

10. Turbulence of the Atmosphere

The propagation of sound in a medium the state of which changes little
over the distance of a sound-wave length was considered in the preceding
section. In the real atmosphere such a method of treatment gives only the
main features of the sound propagation. As a matter of fact, in addition
to the slow change of state of the atmosphere from one layer to the next,
there are also more rapid changes brought about by accidental fluctuations
in the velocity of the wind, namely, the turbulence of the atmosphere.
These changes may be very rapid and their effect on the sound propagation
can by no means always be considered by the methods of geometrical
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acoustics since the dimensions of the region in which an appreciable
change of state of the medium occurs may be entirely comparable with
the length of the sound wave.

Before considering the effect of these phenomena on the sound
propagation, the fundamental laws of turbulence are considered. The
theory of turbulence forms a very extensive and as yet far from fully
developed field of hydrodynamics and aerodynamics. At the end of this
chapter the reader will find references to the fundamental literature on
this subject.

The work of A. N. Kolmogorov, M. D. Millionshchikov, and A. M.
Obukhov in recent times has greatly contributed to the development of
the theory of turbulence. The scope and purpose of this book do not
permit any detailed consideration of these works.

The discussion is restricted to what is most required for present
purposes without pretense of mathematical rigor.

The velocity in a turbulent flow 3(;) is a random function. The
entire velocity field of such a flow may be represented as a system of
disturbances ("vortices") of different scales. The largest vortices are
defined by the dimensions of the entire flow as a whole L. The meaning
of the magnitude L may be very different. For example, it may be the
height of a layer of air above the surface of the ground, the dimensions
of the body, or, it the turbulence is brought about from the initiaslly
laminar flow about the body, the dimensions of the pipe from which the
stream issues, and so forth.

These large-scale disturbances break up into smaller vortices and
the dimensions of the smallest are determined by the viscosity of the
medium, since very sharp changes in the motion of the medium rapidly die
down precisely on account of the viscosity (compare with the dissipative
function Q 1introduced in section 1 from which it is seen that the
energy of the flow converted into heat because of the action of the
viscosity is greater the greater the gradient of the flow velocity).

Such a picture of the distribution of the velocities of a turbulent
flow over different scales of disturbances with successive conversion
of the energy of the large disturbances into the energy of small distur-
bances and finally into heat was first clearly described by Richardson.

In order to characterize mathemat;gally the spectral distribution
of the velocity of the turbulent flow v(x) over the different scale
disturbances, the velocity V(x is expressed as a Fourier type integral

vi (%) =fei(q, ). U; (a2 (3)) (2.49)
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where vl(; denotes a component of the velocity of the turbulent flow
(i = 1,2,3 are the numbers of the axes ox, Oy, 0z), q(ql, qz, qs) is
the wave vector belonging to the scale 1 = Bﬂ/q, and dQ(q ig an
element of volume in space of wave number q. Finally, U (dﬁ(q )) is the
(infinitely small) Fourier amplitude defining the magnltude of the ve-

locity pulsations of scale 1. It is an additive function of the volume
dse:

Ui(Ql +85) = Uj(Ry) + Ui(QZ) (2.49")

Ir vi(x) were_a contlnuous functlon of the point x, there could
be written: U;(dR(q)) = V Q@ ae(vy (2)); the "density" of the velocity

in space 3 and the addltlve property would then be trivial since

91+92
Sl 22

The density Vi however, may not exist while the additive property,
as a more general ofle, may be maintained (for example, discontinuous
functions).

Ui(S?.l + 85)

1

In particular in this case, Ui(dQ) is a random function (in the

space a) and cannot, in general, be assumed as continuous. Hence it is
necessary to make use not of the Fourier integral but of the more general
expression (2.49)7.

The following assumptions are made relative to the statistical
properties of Uj:

(1) The velocity fluctuations associated with the different scales
are statistically independent so that the mean of Ui(gl) . UE(QZ) is

equal to zero

7With regard to the mathematical basis of the expression of a
random function as an integral (2.49), see A. N. Kolmogorov (ref. 18).
In the following discussion, the presentation of A. M. Obukhov (ref. 19)
is followed (essentlally) The same results, but by a somewhat different
method, were obtained also by Kolmogorov (ref. 20).
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U @1) - Uk(ep) = O (2.50)

if the volumes @, and R, do not overlap (which means that the Uj
and Uy Dbelong to different q). The asterisk ¥ denotes the conju-
gate complex magnitude.

(2) For coinciding volumes it is assumed that

U; @) UF () = #55(2) (2.51)

is an additive function of the region §. Physically this means that
the intensities associated with the different scales of turbulence are
combined. Since &;) 1is a certain mean magnitude, it may be a smooth

function and may be expressed in terms of the "density" Vyy:

by (R) =f¢ik(_§)d9 (2.52)
Q

The value V4 shall be called the spectral tensor since it

determines, as will be seen, the distribution of the energy in a tur-
bulent flow over the different scales of the fluctuations 1 = Zn/q.
If interest lies not in the complete velocity of the turbulent flow

but in only that part of it -;P(i) which refers to the velocity fluc-
tuations having a scale less than 1 = Zn/b, the expression for P (%)

is obtained from equations (2.48) if the integration with respect to q
is extended over the range q > p:

% (x) =f RiCE SE)Ui(dg(i)) (2.53)
q>p

The "moments of correlation" MEK(Q*, X") are determined by the

equation

M, (&7, %) = VPR - (") (2.54)

that is, as the mean of the product of two velocity components v? and

vﬁ taken at two different points X' and x". The set of magnitudes
Mik(;" X")(i, k = 1, ¢, 3) forms the tensor of the correlation moments.

For homogeneous turbulence, that is, such that the states of the flow
at different points of space do not differ from one another, the tensor
of the correlation moments will depend only on the distance between the
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-+ > > o > ->
points x' and x", that is, on p = x' - x". Substituting v?(x)

from equation (2.53) into equation (2.54) gives

-

P 1
¥, (5) = f 1@ %)y, (ag(q1)) - f e 1@ x) . yrag(3))
q2p 2P (2.55)

Use is made of the statistical independence of U; and Uk belong-

ing to different gq (condition (2.50)) and of the additivity (conditions
(2.49), (2.51), and (2.52)) to obtain

¥ (8) =f (@ ?) ¥y (@de (2.56)
PP

»The motion of the fluid is considered incompressible so that
div V= 0. From equation (2.53) there then follows:

;&)
55— =0 (2.57)

i
i=1

Applying this relation twice to equation (2.54) (differentiating once
with respect to X' and again with respect to ';") results in

3 2
a Mi)k(-}z‘) ;E")
Se TS T 0 (2.58)

i k
i, kei

From the preceding and from equation (2.56) it then follows that
the spectral tensor wik(a) must have the form

;9

This tensor is now connected with the energy distribution in a turbu-
lent flow over the fluctuations of different scales 1. The energy
shall be considered as referred to unit mass so that the measure of
energy will be v2/2. The mean energy E(p), referring to the velocity

fluctuations the dimensions of which are less than 1 = Zn/f, will be
equal to
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3
E(p) = 5(v*(x))% =
i=1 i=1 i=1 YP&P (2.80)

Do)

or on the basis of equation (2.59),

E(p) = 4K\J/f“’f<q>q2dq (2.61)
q>p

For determining the form of E(p), use is made of dimensional con-
siderations. The flow is assumed not only homogeneous but also isotropic
(of course again statistically in the mean). The turbulent motion of
such a flow must be maintained by a certain constant supply of energy
from outside, for example, by the energy of solar radiation giving rise
to the motion of air currents.

This same energy, since a stationary state is considered, is dis-
sipated in turbulent motion, being converted because of the action of
viscous stresses into heat. The energy dissipated shall be denoted in
unit time (per unit mass of gas) by Dp. (It is equal to the supply

of energy from outside.) The dimensions of Dy are —L2T°3(cm2/sec3).

In a developed homogeneous and isotropic turbulence its spectral state
must be determined by the supply of energy which maintains the turbu-

lence, that is, E(p) = F(Dy,p). Representing F in the form Dg - p",

a dimensional equation for determining n and m 1is obtained in the
form

127-2 - (g27-3)npm (2.62)

from which n = 2/3 and m = —2/3. The impossibility of forming any
nondimensional combinations from Dy and p 1leaves

E(p) = constant Dcz)/3 p-2/3 (2.63)

A more detailed analysis by A. M. Obukhov (1oc. cit.) shows that

-2/3 . . . .
constant = qjﬁ * % / where x 1s a certain nondimensiocnal number of

the order of 1; thus, in the notation of Obukhov,

Do\ 2/3
E(p) = i?ﬁ . (‘9) p-2/3 (2.63")

n
Since p = 2x/1, E(P) = 32/3 |
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This law, established by A. M. Obukhov (ref. 19) and A. N.
Kolmogorov (ref. 20) is usually briefly referred to as the "2/3" law.
From the law it follows that the energy of homogenecus and isotropile
turbulence is concentrated mainly in the region of large-scale fluc-
tuations of the velocity. The value of the energy E(I) is restricted
by the maximum scale of the turbulence L determining the dimension
of the flow as a whole. For atmospheric turbulence L 1is the height
of observation above the earth's surface.

Differentiating equation (2.61) with respect to p and using
equation (2.65) glve

3

. D\2/3
-11/3 2+/2( -0
f(p) = vp / v =3 (7) (2.64)
and therefore the spectral tensor is equal to
3%\ +-11/3
¥k @) = (6ik gl )Yq (2.65)

In concluding, the mean-square difference of the velocity components

taken at two different points of space is computed:

(PR - PEM)E = 2((PED)E - PE VPG (2.66)

On the basis of equation (2.54),

FE) - EE = e, ) - 8, ()} (2.67)

from which, with the aid of equation (2.56), there is obtained

(BG) - vRGE)Z = 2f {i- @ Ph@es  (eor)
a>p

Introducing the new nondimensional variables a = Q0 B = q,p,

and v = qzP Qiﬁ:: do dB dr/pd and (a; 3) = akfp + Bn/o + v¢/p, vhere

E, n, and ¥ are the projections of p) and using equation (2.65)
result in

(V}{(;') - Vlf(;"))z - K2p2/3 (2.68)

where the constant K2 is of the order of magnitude of Y (see
eq. (2.64)).
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A. M. Obukhov (ref. 19) gives an estimate of the value of y from
the fact that the energy of the atmospheric turbulence is derived from
the energy of the solar radiation. According to Brent (ref. 21) 2
percent of the sun's energy is converted into the energy of atmospheric
turbulence and in this way is dissipated, being converted into heat.
This gives Dg = 5(erg/sec3), which leads to the value 1y = 2.4.

All the results given refer to isotropic and homogeneous turbulence.
A wind blowing under actual conditions may perhaps be considered as an
isotropic turbulence provided all the gigantic air flows in the atmos-
phere as themselves are not considered turbulence phenomena of the air
envelope about the earth.

Such a point of view is possibly justified in meteorology and
geophysics, but it is unsuitable for an observer who has little time
at his disposal for following the changes in weather (at least in
relation to the wind). Hence for short intervals of time in the course
of which there is observed a prolonged constancy of the mean wind, it
is convenient to consider the turbulence as superimposed on the mean wind
(and the change of "mean" wind will lie outside the small scales of
time in the course of which the observation is conducted, for example,
in the course of minutes or hours). For such an approach the preceding
derived equations may be assumed valid in a system of coordinates mov-
ing together with the mean wind. The value of the constant y or K
in equation (2.68) may then depend, however, on the absolute magnitude

-
of the mean wind velocity vog- This evidently has also been observed
in tests (see the following).

11. Fluctuation in Phase of Sound Wave Due to Turbulence of Atmosphere

Very interesting tests on the propagation of sound under the actual
conditions of a turbulent atmosphere were conducted by V. A. Krasilnikov
(ref. 22). His tests, the main features of which shall be described in
this section, are of interest from two points of view. In the first
place, they provide a method for the study of atmospheric turbulence;
and in the second place, a circumstance which bears a direct relation
to our subject, they throw light on the laws of sound propagation in a
turbulent atmosphere. They also have a bearing on the accuracy of
operation of direction-finding acoustical apparatus.

The test of Krasilnikov consists essentially of the following: At
a point Q 1is placed a sound source (reproducer, fig. lO) at some
distance from two microphones My  and MZ’ The distance MMy = 1

is the base of the directional-finding pair. The distance QB from
the source of the sound to the center of the base is denoted by L. If
the base were turned at a certain angle to QB different from 90°,
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then on account of the different distances QMl and QM2 the sound

wave would arrive at the microphones M; and M, with different phase.

By determining that position of the base MMy (by an objective method

or by the binaural effect) for which this difference in phase is equal
to zero, the direction to the source @ may be determined. On this
principle are based acoustical direction finders. ©Such difference in
pPhase may, however, also be cbtained for the "correct"” position of the
base MMp (at angle 90° to QB) if the physical conditions of the

sound propagation along the two rays QM; and QMp are different.
Such difference in conditions is obtained as a result of the turbulence
of the wind.

The velocity of the wind, on which the wave phase depends, is a
random function of the point of space. On account of these random
differences in the velocity of the wind along the two rays QM; and

QMo, the difference in phase of the waves arriving at M1 and M, 1is

likewise a random magnitude. This phase difference V¥ was determined
in the tests of Krasilnikov; in particular, its mean-square value

Wz was found.

As has been shown (section 7), the phase velocity of sound in the
presence of a wind is equal to Vg = ¢ + vy, where c¢ 1is the velocity
of sound and v, 1is the projection of the wind velocity on the normal

to the wave. In this case the directions of the normals for the rays
QMl and QM2 differ little from the direction @B, which is taken

for the x-axis. The projection of the wind velocity on this axis is
denoted by v, and V¢ = ¢ + v 1s obtained. The phase of the wave
passing from Q@ to M; will be

L

L
dx [
Q1=w[c+vl=¢0'?f vydx (2.69)
0

(terms of the order of vi/c2 and the differences between dx and
dsy = dx/cos ® are neglected; see fig. 10) where vy denotes the
value of the velocity on the ray QMl' A similar expression will be
. obtained for the phase in the microphone Ms. For the difference in

phase,
L L

w
Y =0y -0 = .(.:.E (vl - Vz)d.x = %_ Av dx (2.70)
c
0 0
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where vy 1is the value of the projection of the velocity in the second
ray (QMZ) on the axis. The mean value of V¥ 1is, of course, egual to
_Z

zero. The measure of V will be From equation (2. 70),

) —_Q//\ dx'\j/“ ax" + Av(x Jav(x™) (2.71)

The averaged magnitude under the integral sign is equal to

Av(x")Av(x")

AR IIARERZCH))

vl(x')vl(x") + vz(x')vz(x") - vl(x')vz(x") -

vl(x")vz(x') (2.72)

On the basis of equations (2.57), (2.66), and (2.68),

2 | o _ 2/3
vy Vg = 2K rih (2.73)

where rio is the distance between the points 1 and 2.

Use is made of equation (2.73) to obtain

() - av(x") = - %Kz{rz/s - TV r2/3}

l'l" 2[2" 2'1” 2"1|
(2.74)
from equation (2.72).
In figure 10 it is seen that
2 2
rill" = rgrzll = (Xl - Xz) (l + 9 ) (6<<l)
(2.75)
2 _ .2 _ _ 2 2 52
rgign = Tonpn = (6 - x)0 4 (x4 %) 6

In this manner there is obtained from equations (2.71), (2.74), and
(2.75)
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. . L L |
Y2 = (_:_1)2_) G f d.xlf dx, {_[(Xl - xz)z + (xl + }(2)2 68:11/3_
0 0
(x, - x2)2/5(1 + 92)1/3} (2.76)

Setting x = xl/L and y = xz/L gives equation (2.76) in the form

1 1
—_ 2
Ve = (%) x21.8/3¢5/3 i %[ dy x
C

{[(x_él)z + (x + y)z]l/s ] (x - y)2/5 (s 62)1/3} (2.76")

If in the preceding double integral are introduced the variables

E = E-é—z and n =X+ ¥y, then for 6 + 0 it does not depend on &

and converges to a value of the order of 1. Hence

2
¥2 = constant K2 (%) 18/35/3 (2.77)
C

Denoting the length of the base Mle by 1 and remembering that
0 = l/ZL result in

Y2 = constant K E% Ll/ZZS/6 (2.78)
c

Thus, the mean-square fluctuation of phase of the direction finder is
proportional to the sound frequency w, to the square root of the
distance from the source, and approximately (exponent 5/6) to the length
of the base. The test data of Krasilnikov (loc. cit.) very well con-
firm both the dependence on ® (the tests were conducted in the range

from 1000 to 5000 hertz) and the dependence on 1 (~Zb/6). It is of
interest to remark that the constant K according to the datq*of
Krasilnikov is proportional to the mean velocity of the wind v. The
same result was reached by Gedicke (ref. 23) and Findesen (ref. 24),
who measured the turbulence of the atmosphere near the ground. This is
in agreement with the remark herein on the fact that the turbulence of
the atmosphere, if the observation times under consideration are not
too large, must not be considered isotropic (section 10).
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The question of the error of the direction finder will now be
considered. Let the direction at the source make the angle a with the
direction of the base. Then the difference in phase at M, and Mp

in the absence of turbulence will be

¢=3’¥—cos a (2.79)

The error ©a in o due to the random fluctuations of VY will be

A
o= mr e (2.80)

At large values of « (a~n/2) for the mean-root deviation of 6@2
there is obtained

) A constant B
‘\’ 8:? = 55 ’\’E\F . AR g 1/-1/8 (2.81)

Making use of the data of his tests, Krasilnikov determined the numerical
value of the constants entering equation (2.81) as follows:

52 = 0.3 - 1-1/6 (%)1/2 (.25.7.) (2.82)

where o 1is in degrees, 1 and L in meters, and the mean velocity of
the wind 1s in meters per second. For example, for 1 =1 meter,'$ = 2.7

meters per second, and L = 2000 meters, there is obtained ‘V 6@2 = 3°,
The value, if compared with the errors observed in practice of acoustical
direction finders, is somewhat exaggerated.

The fact of the matter evidently is that acoustical direction
finders generally operate in a range of frequencies of 200 to 500 hertz.
For these low frequencies the approximation of the geometrical acoustics
on which the preceding computations are based may not be suitable.

Krasilnikov (ibid.) also conducted interesting observations on the
random variability of the phase in time. The measurements were in this
case conducted with the aid of a single microphone M; the values of
the phase ¥ at two instants of time separated by a small interval At
were compared. The results were worked out for the case where the
mean wind was perpendicular to the ray Jjoining the source Q and the
microphone M (fig. 11). The computation was conducted on the basis of
the hypothesis (section 10) on the isotropic and nomogeneous character
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of the turbulence in a system of coordinates moving together with the
wind. In the time interval At the phase at the point M changes by

L
A-t\lf = %f Av +» dx (2.85)
c
0

where Av 1is the change in velocity during the same time. Hence

——2 w & - 1 - 1" 7 ]
AVE = (EE) \}(\ dx ax" -+ Av(x') - Av(x™) (2.84)
0 0

The principal change in the velocity is due to the transport of turbu-
lence by the mean wind so that the change of the velocity v in the
time At may be represented as the result of the displacement of the
turbulence by a small distance 5 =¥ - At. Then

£ (x")av(x") = [v(x', 0) - v(x', 8)}[ v(x", 0) - v(x", 8)]

[

v(x', O)v(x", B) (2.85)
Making use of the "2/3" law gives

ST - - K fater - 233 - (e - xmE 4 52]1/3}

2

= K2 {}rz + 82)1/3 _ r2/5j}; v o (xt - xm)E (2.86)

Substituting equation (2.86) in equation (2.84) and applying to the
obtained double integral the same considerations that were applied to
the integral (2.76) result in

W = constant K2L8/3 (ci)é)2 (% )5/5 (2.87)

where the constant is found to be = 3. Thus

A,Awwz = K+/3 14/3 E% & - At)s/s (2.88)

v(x', O)v(x", 0) + v(x", ) - v(x", d) - v(x', d)v(x", O) -
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—>
Test data give the relation (v - A$)4/6 rather than (v - At)s/s. It
is as yet difficult to explain the source of this divergence. Equation

(2.88), since A%WZ, L, 3, At, and o are known from*tests, permits
determining the constant XK 1in the "2/3" law. For v = 6.5 meters
per second there is obtained from tests

K = ll(cmz/s/sec)

The c¢urbulence measurements at the height of 2 meters above the earth
coriucted by A. M. Obukhov and N. D. Ershova give (for v = 3 m/sec)

the value K = 3.1 centimetersz/3 per second.

—*
Gedicke (ref. 23) obtains for K (at v = 0.65 m/sec and height

1.15 m) the value 2.05 centimeter52/3 per second. It follows that the
order of magnitude of K is in all cases obtained as that of unity.
The increase of the constant K with the velocity of the wind is a
fact, however, which shall have to be taken into consideration in
another connection.

12. Dissipation of Sound in Turbulent Flow

It is a well-known experimental fact that in the presence of wind
the audibility of sounds is markedly decreased. This decrease in
audibility is not a conséquence of the curvature of the rays in a wind
with velocity gradient considered in sections 8 and 9; it has a more
complicated character and is connected with the turbulence of the wind.
The first to point out these phenomena in connection with the occurrence
of acoustical fading were Dahl and Devick (ref. 25). The same phenomenon
of acoustical fading was investigated by Y. M. Sukharevskii in measure-
ments on mountains (Elbruz expedition of the USSR Academy of Sciences,
1940). The general impairment of audibility in a wind has also been
pointed out by Stewart (ref. 26).

From the experimental viewpoint the problem was investigated most
thoroughly by Sieg (ref. 27) who showed the existence in a wind of an
additional damping of sound exceeding the damping associated with the
molecular properties of the gas (viscosity, heat conductivity, and
Kneser effect). The results of Sieg may be essentially reduced to the
following: In the frequency interval 250 to 4000 hertz in a weak wind
(1 to 2 m/sec or at an almost complete calm) considerable fluctuations
in the sound intensity (fading) are not observed, but the intensity of
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the sound drops with increasing distance, the damping coefficient «

being equal to 1.5 to 2.2 decibels at 100 metersS. Sieg does not find
any dependence of the coefficient o on the frequency. It should be
borne in mind, however, that the accuracy of Sieg's observations is not
large; the directional characteristics of the source were not taken into
account, and the conditions under which the points for the various
frequencies were taken were not identical. For this reason this result
does not appear entirely reliable; it gives rather the order of magnitude
of « which in the interval 250 to 4000 hertz does not change.

In the case of a strong gusty wind the coefficient of damping

decreases, reaching a magnitude of 5 to 9 decibels at 100 meters (for
a wind with gusts of 7 to 17 m/sec). Under these conditions the
dependence of o on the frequency becomes more marked, a being equal
to 5 decibels for 250 hertz, 8 decibels for 2000 hertz, and 9 decibels
for 4000 hertz (at 100 m). Under the same conditions, fading is observed;
the fluctuations of the intensity attain 25 decibels. Both these effects
are explained without forcing by the theory of the propagation of sound
in a turbulent flow (refs. 28 and 29). In considering the propagation
of sound in a turbulent flow, it is first of all necessary to bear in
mind that those fluctuations of the velocity of the stream having the
scale 1 which is considerably greater than the length of the sound
wave A do not lead to the dissipation of the sound. They bring about
only changes in the shape of the rays and therefore a general fluctuation
of the sound intensity at the location of the receiver (fading). The
effect of these large-scale pulsations may be eonsidered by the method
of geometrical acoustics. Hence the velocity of a turbulent flow must

> e .
be decomposed into two components v (macrocomponent) and u (mlcro—

component):
- e R 2
! =f e1(3,%) y(ag(a))
I<qq

G<dp

_’
where v includes the mean velocity of the flow '30. The magnitude
dg = k/p, where k = Zﬂ/k, is the wave number of the sound wave and
is a nondimensional number >>1. The dissipation of sound from a

(2.89)

c o+

parallelepiped L3 where L)\ and Inizﬁ/qo will now be considered.

8There is here subtracted the molecular absorption (Kneser effect
with account taken of the humidity of the air). It has a considerable
value starting with frequencies of 1000 hertz. The classical absorp-
tion due to the viscosity and the heat conductivity is of significance
only for frequencies greater than 10,000 hertz.
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Under this condition the velocity v may be considered approximately
constant in the volume.

In a local system of coordinates which move with the velocity ;,
the frequency of the sound f varies in it (Doppler effect) only by the
small amount f . v/c, but the frequen01es of the turbulent fluctuations
in this system are equal to v = u(1) /Z, where 1 1is the scale of the
pulsations and u(Z is the velocity of the pulsations associated with

this scale. According to the "2/3" law, u? = constant - 12/3-<<f (where

constant ~ 1 cm4/5/sec ), so that v = constantl/2 . 1"2/3«< ¢ for all
values of f of practical applications.? Hence in the propagation of
sound through a turbulent flow, only the instantaneous picture of the
turbulence and not its process with time is of significance. For the
same reason it is not to be supposed that the damping of sound in a
turbulent flow is conditioned by the existence of turbulent viscosity.
The tensor of the turbulent stresses with which the concept of turbulent
viscosity is associated is obtained as a result of the averaging of the
turbulent pulsations for the given mean flow. This averaging presupposes
that all the changes in the mean flow occur more slowly than the random
pulsations of velocity produced by the turbulence. For a sound wave the
situation is the reverse (v«f). The effect of the turbulent flow on
the sound wave should reduce to the dissipation of sound in a manner
similar to the dissipation of light passing through a turbid medium;

in both cases random changes of the velocity of the wave propagation
occur. An estimate of the magnitude of this dissipation is now made. A
start will be made from the equation of A. M. Obukhov, approximately
taking into account the presence of vortices. The quasipotential of the
sound wayes is denoted by ¥ and the total velocity of the flow by
V=7+1u to obtain from equation (2.84) (for Uy = 0, vlog c? = 0,
V’/C <<1)

2 t -
;lﬁ g-t—g - A+ 5—2 (_x}, v?ri) -\f‘ (v, av)dat = 0 (2.90)

Passing over to a local system of coordinates in which v = 0
results in

9It should be remarked that there exists a minimum scale of turbu-

lence 1 = lpip = 1/1/— . ‘\’ 3/Dop3 (DO is the supply of energy, u
1s the viscosity of the medium, p 1is its density, and w a number

S 1. See A. M. Obukhov (ref. 19) On account of this, the inequality
v« I may be violated only for f of the order of several hertz.
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1 3% 2 ) ¢ =
= ggﬂzi -y = -3 (ﬁ, Vayg) +f (v, su)at (2.91)

The right side of this equation will be considered as the disturbance.
By rejecting it completely, the zeroth approximation Yoo representing
the fundamental wave, 1s obtained as

Vo = Aei[mt—k(ﬁl,;)] (2.92)

where ﬁl is the unit vector in the direction of propagation of the
fundamental wave Kk = m/c. The complete solution will be

V=V¥pt o (2.93)

where ¢ 1is the dissipated wave. For large distances R from the
parallelepiped considered, ¢ 1is of the form

i (wt -kR)

B
== € 2.94
® =g (2.94)

The amplitude of the dissipated wave B is determined by use of
the method of the theory of disturbances and the substitution of @ in

the right side of equation (2.91) in place of V. There is then obtained

t
1 82(p 2 [» aq’[O

The solution of the wave equation (2.95) having the form of equation
(2.94), as is known, is equal to

nd r

1 Q(X" t - E)
o(x, t) = - e av! (2.986)
1.3

where dv' = dx' - dy' - dz' and r is the distance between the pogpts

-»> .
X (point of observation) and x' (source of dissipated wave). Let n be
the unit vector in the direction of the dissipated ray (fig. 12), R
the distance from the center of the parallelepiped, and 6 the angle of

-+ ->
dissipation (angle between ny and n). Then, as follows from the

sketch, r = R - (x', ) (neglecting terms of the order of x'/R).
Substituting in equation (2.96) @ from equation (2.95) and using
equation (2.92) give for R —» =
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1 oifwt-kR) 4 2 L e >y (K%
® = -z R % (2u'k® + Aut, nl)e (K, )dv' (2.97)
3
_’
where the vector K 1is equal to
K=k@-7n); K= 2k sin % (2.98)

-
and U' is the value of the velocity ; at the point x'. Thus the
amplitude of the dissipated wave B is equal to

—» - - '(}'E-’?
B = — (202 + An, nl)el X" ) gyt (2.99)
13

The coefficient of damping a is expressed in terms of the amplitude
of the dissipated wave. The flow of sound energy N into the base of

the parallelepiped 12 is proportional to AZLZ, while the flow of
energy dissipated from the. parallelpiped is obtained by integration

over a distant sphere of radius R and is proporticnal to RZ\J/qhﬂde,

where d§& denotes integration over all the directions of dissipation.
Since interest lies not in the instantaneous value of the dissipation

but in the mean value, Rz\j/]B‘de must be taken in place of the

previous expression, where the bar over lB,z denotes the averaging
over the velocity fluctuations of the turbulent flow. The mean decrease

of the energy flow in passing through the parallelepiped L3 will be
AN = aNL (2.100)

from which o = AN/NL, and since AN = B - RZ\J{\lBlde (B 1is the
factor of proportionality) and N = PAZLZ,

[oeas
- o

(2.101)
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From equation (2.99) it follows that

———

- 2 NP ing
IB 2. A dv! dv"el(Kp)x
1612c2
LS L3
{(2u'k2 + su)) (2u)k2 + Aui)} (2.102)
where B = x" - X' is the radius vector between the points x" and
;', and u; 1is the projection of T on Hi. Introducing in place of
;' and x the relatlve cocordinates B and the coordinates of the
_’
center of gravity x = 5——%_5_ results in
313 e
'B,2 AL av_e1 (K, p)x
16“2 3 P
4 2 2
{}k M, (8) + akPaM; (B) + o Mll(Ei} (2.103)

where

—> [
My () = uy - u) = u G, 1)

is the moment of correlation. This moment is identical with the moment
Mpk(g) introduced in section 10 (see eq. (2.54)) for i =k = 1 and
P = qq- Now equations (2.56) and (2.65) are used to find that

-1 ql -
) = e~i(@s0) i - —=ra ll/sdqldqqus (2.104)

M, (e -

4<qn

The multiplication of the expression under the integral in equation
(2.104) by -q2 and by q%, respectively, is obtained by simply applying
to Mll p) the operators A and A2, Substitution of the moment (2.104)
in equation (2.103) leads to integrals of the form
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(h&id/q dql . d.q2 . qu . ellk=-g,p F(q)
q>q0

= (vn)3 dqldqqu?S . ;(Kl - ql)E(K2 - qz)x
9>dqn
o(Ky - a,) - F(q) = (2n)3 F(k) for K>qq,
=0 for K< q (2.105)

Here  5(x) Is the symbol of the 8-function (see section 6). Hence

lBI“ is ottained as

2
T A 13k (e 4 K. -
H _ ‘rA‘[ k <L _ 5; L K > (1 ) _%)Y . k-11/3 (2.106)
e ke 4kt K
for K= q., otherwise |B|73 = 0). From this, on the basis of equation
. 0
(2.101),
4 2 4 K2
‘- (3 & -
o = LIK (1 -I-{g+f‘—4 ( C 8 )13 g 2.107)
e kS 4k K>

where the inlegration over the angles is extended to the values K>~qo.
Setting =in Q/R =f and dR = sin § d6 & = 4 - d& + d¢ shows that
the integration uver & = K/Zk is extended from & = 1/2u to &= 1.
Carrying out this elementary integration yields

- 2

1/251

Y B(P_T_/_L/_S.) 1 (2.108)
¢ A

where

¢

5 = S(un)L/3 {1 + 25(20)"1/3 - 21(20) 4/ & o(u‘4)} (2.109)

The ne -aitude 2n71/3x1/5 is the velocity of the turbulent pulsations,
the scale of which is less than A. Thus the coefficient of damping

of the sound waves in a turbulent flow is proportional to the square of
the Mach number (M, = u(X)/c) for the velocity of the turbulent pulsa-
Cicone of scale less than A anda inversely proportional to the length of
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the sound wave A. The magnitude 2nyl/2, on the basis of the estimate
of A. M. Obukhov given in section 10, is equal to 3. The data of V. A.
Krasilnikov (section 11) and also of A. M. Obukhov and N. D. Ershov

(section 11) give, for a moderate wind, Bﬁrl/z = 6. As already pointed
out, the turbulence of the wind must not be considered isotropic so

that, in general, anl/z is an increasing function of the wind velocity.
If use is made of the as yet not very reliable test data presented in
section 10, it is necessary to assume Y proportional to the wind
velocity. This explains the increase in the coefficient of damping a
with the wind velocity. The dependence of the coefficient o on the

length of the sound wave is obtained in the form x'l/3, that is, a
very weak dependence; but, on the basis of what has been said, this
dependence does not contradict the test data of H. Sieg. In order to
estimate the value of the numerical factor u, use is again made of
Sieg's data for a weak wind. In this casée ZﬂYl/2 = 6. The coefficient
a 1s equal to 1.5 decibels in 100 meters, which in absolute units gives

10-Scentimeters~!. For f = 500 hertz (A = 68 cm) there is obtained
10. This value of p should be considered as entirely reasonable.
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13. Sound Propagation in Medium of Complex Composition,
Particular in Salty Sea Water

In the theory of sound propagation presented, the medium was
assumed homogeneous in its composition. In practice, however, it is
necessary to deal with cases where the composition of the medium varies
from point to point (air, for example, the humidity of which is differ-
ent at different places or sea water with variable saltiness).

All the theorems of geometrical acoustics that were derived in
sections 7, 8, and 9 retain their validity for media of variable com-
position.lo The initial general equations of the acoustiecs of a non-
homogeneous and moving medium must, however, be modified.

The need for modifying these equations is dictated by the fact that
in a medium of complex composition the pressure p depends not only on
the density of the medium p and the entropy S but also on the con-
centrations Cyi of the individual components forming the medium (for
example, on the concentration of the water vapor in the air, the con-
centration of salt dissolved in the water, and so forth). Hence the
equation of state must be written not in the form p = 7(p, S'), as
previcusly, but in the form

lOProvided, of course, that the fundamental hypothesis of geomet-
rical acoustics on the smoothness of all changes in state of the medium
1s not violated.
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p = %(p, S, C) (2.110)

Here p 1is the density of the medium and C is the concentration
of the second component in it; C = p"/p', where p" 1is the density of
the dissolved component, and p' is the density of the soclvent

(p=p' +0" =p'(1 +C)).

Further, to the hydrodynamic equations it is necessary to add
equations governing the changes in concentration of the dissolved com-
ponent. These changes are produced by convection, diffusion, and the
action of the gravitational force. In order to write downlghe cor-
responding equations, the flow of the dissolved component J" is noted

as

e d

J" = Vp'C + 1 (2.111)
~ -
i=-p'DyVC -~ p'DVT + p'ugC (2.111")

where Dl is the coefficient of diffusion, Dp is the coefficient of
thermodiffusion, u 1s the mobility of the solvent in the field of
gravity, and E is the acceleration of gravity. The first term in
equation (2.111) $p'c represents the part of the flow due to the con-

-
vection of the substance, and the second term i, the part of the flow
due to the irreversible processes (diffusion, thermodiffusion, and
motion in the gravity field with friction). On the basis of the law of

conservation of matter,
1 -
S ptC +div J" =0 (2.112)

The density of the pure medium p' 1is subject, of course, to the
equation of continuity

o' div(p'v) = 0 (2.113)
ot

The required equation for C 1is obtained from equations (2.112) and
(2.113):

¢ - 1 ..
5t * (vwe) = - 3 div

_)
i

(2.114)

For the total density p = p'(l + C) there is obtained from
equations (2.112) and (2.113)
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- >
g% + div(pv) = - div i (2.115)

The fundamental dynamic equation of hydrodynamics

a;”+ 63, 1+ v
5t [rot v, v] 5

%+"g’+ VAV + ¥ pdiv v (2.116)

W

remains unchanged. The equation of entropy will be written in the
abbreviated form

g‘%s' + (Vvs) = v (2.117)

where V¥ denotes the changes in entropy due to the irreversible processes
occurring in the motion of the fluid (w contains terms proportional to
Vy; A, Dl’ Dy, and u) and also the possible supply of heat from without.

Equations (2.110), (2.114), (2.115), (2.116), and (2.117) form a
complete system of equations for a medium in which some component is
dissolved (water vapor in air, salt in water, and so forth).

In the propagation of sound all the Eagnitudes charactggizigg the
medium receive small increments so that v is replaced by v + &, p
by p+n, p by p+5%5, S by S+ 0, and C by C + 3%, where %
denotes a small change in concentration of the dissolved component that
occurs in the medium on the passage of a sound wave. Substituting these
changed values in equations (2.110), (2.114), (2.115), (2.116), and
(2.117), restricting to a linear approximation, and rejecting the added
terms proportional to v, A, Dy, Dy, and u, that is, leaving aside the

irreversible processes accompanying the sound wave, givell

-
%%+[rot_w;,—£] + [rot E, ¥] + (¥, E):-§—“+%@ (2.118)
o
%2-+ , ¥8) + (£, Vo) + p QivE + & @iv v = O (2.119)
do -> -+
5t (vy vo) + (£, vs8) = 0 (2.120)

1lThe diffusion of the salt may give an absorption of sound in
addition to that due to the viscosity and heat conductivity.
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g-;t- + (v, vg) + (}E,VC) = 0 (2.121)
T =c2 85+ ho+ g3 (2.122)
where
o ap) (a ) (ap)
© = y h= = .
© <55 s,0 3 b,0’ © TN\ (.123)

The square of the adiabatic velocity of sound for constant concentration
of the solution is c@

These equations must be considered as the fundamental equations
for the propagation of sound in a nonhomogeneous and moving medium of
variable composition. If by C there is understood the concentration
of the water vapors in the air, these will be the equations for the
propagation of sound in a humid atmosphere.

The same equations may also be considered as the equations for
sound waves propagated in salty sea water. For this, C must be con-
sidered as the concentration of the salt dissolved in the water. In
the presence of entropy gradients (VS ¥ O), as in the presence of
gradients of the concentration of the dissolved component (VC ¥ 0), the
right side of equation (2.118) is not a total differential of some
function. Hence even in the absence of vorticity (i.e., for rot v = O)
the sound will be vortical (rot 2’# 0). Because of this the system of
equations (2.118) to (2.122) cannot be reduced to an equation for a
single function (for example, to an equation for the sound potential, to
an equation for the sound pressure, and so forth).

In order to change to the equations of geometrical acoustics it is
noted that equation (2.121) does not differ formally from equation
(2.120). Hence, following the same method which was used in section 7
for deriving the equations of the geometric acoustics of a medium of
%onstant composition, and assuming, in addition to equations (2.5) and

2.7),

z=3zq - el¥ o =Zdt et o (2.124)

result in

2o =0 (2.125)
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that is, in the first approximation of geometric acoustics the sound is
propagated not only isentropically but leaves unchanged the composition
of the medium (Zé = 0). All the remaining conclusions with regard to
geometric acoustics previously cobtained likewise remain in full force.
The effect of the nonhomogeneity of composition of the medium is in this
approximation reduced to the effect on the velocity of sound in the
medium c¢ and on the density of the medium p.

The sound will be propagated within the ray tubes with velocity

V- @+ e =,\, igg)s C (2.126)
b4

and the pressure = will be subject to the law

72

pqe?

®_ - constant (2.127)

(compare section 7, eq. (2.32)).

The particular case when the medium is at rest is now considered.
This case is of special interest for water in which the velocity of
sound is large while the velocity of flow is small.

For a medium at rest (v = 0), from equations (2.118), (2.119),
(2.120), (2.121), and (2.122),

_’
OE _ _Vn , Vp (n - ho - gZ '
--T. ;% (___7;?____.> (2.118")

a - - -3
E-t- (.ﬁ__.lc%_gz_)-i- o) divEi = 0 (2.119')

g% = - (€, W) (2.120")

g%.= - (g,vc) (2.121")

Setting n/p = [1 and making use of equations (2.120') and (2.121'")
give the equations for Il and Z:

3% d yp' A | y >
- R W D (2.1
pc pre
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1an > (wpt,
= + div & + =0 (2.129)
2 Jt o2
where
Vp' = hyS + g - yC = Vp - c2yp (2.130)

Substituting dl/dt from equation (2.129) in equation (2.128)
gives the equation for the velocity of the sound vibrations

> . -
o% _ (2. o7, e B)Y vt - aivE o (9p'E)
i v div £ + 5 5 + 5 5 (2.131)

This is the equation for the propagation of sound vibrations in a
medium at rest in which the density, temperature (entropy), and concen-
tration of the dissolved substance vary. It is seen from the equation
that for the computation of g it is sufficient to know ¢, p, and p
as point functions, where ¢ 1is the adiabatic velocity of sound and p
is the total density of the medium.

Equation (2.131) does not reduce to an equation for the potential
or the pressure.

After E has been found from equation (2.131), the sound pressure
is found from equation (2.129) as

t .2
%:l‘[:f {:2 divif+-§zpp’—5)}dt (2.132)

In certain special cases equation (2.131) may approximately be
replaced by the simpler wave equation. In fact, a medium for which the
term in equation (2.121) containing VC2 is much greater than the terms
containing ¥yp' 1s assumed. Then, rejecting the terms with V¥p' and
setting E = - J¢p (@ 1s the velocity potential of the sound vibrations),
the usual wave equation is obtained:

32
%= c2ap (2.133)
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in which, however, c¢ varies from point to point.

-
The term with Vvc2 is vel div £ and in order of magnitude is
—>
equal to vc2 . kE ik is the wave number). The greatest term containing

-
gp' 1is yp' - div E/p, in order of magnitude equal to gp' - kg/p.
Hence the terms containing Vp' may be rejected and the term containing
yeZ retained if

e >>EpE (2.134)

In order to obtain the condition satisfying this inequality, c?
and p' are considered as functions of p, T, and C. Then

- dc? dc? dcl
el = (%—)T,C - gp + (5—;—2’0 T + (%)p,T - yC (2.135)

1 2 ) P d
w'_ W _ et o) ) ( p) ( )

Here (ap/ap)p,c = 1/a% (a2 1is the square of the isothermal velocity

of sound), (Bp/BT)p,C = - pp (B is the coefficient of volume expansion),
1 (ov . .
and (Bp/BC)T,p = - pw, where x =g (EE)T,p is the relative change of

volume of the fiuid (gas) with change in the concentration of salt (or
vapor, respectively).

Since

and

from equation (2.136)

' 2g2
vp' _ _ 8B | o5 4 c28 . YT + B VC (2.137)
P p - Cy
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These equations, on the basis of experimental data, permit solving the
problem of satisfying (or not satisfying) inequality (2.134).

In particular, for salt sea water, this inequality is evidently
satisfied. In fact, for water B =2 . 1074 at 18° C, and at 4° c,

. 1 .
B = 0. The magnitude x = 7 (BV/BC)p,T for a solution of NaCl or KC1

at 15° is about 0.15 to 0.20. According to the measurements of A. Wood
(refs. 30 and 31), the velocity of sound in sea water at t = 16.95°

and saltiness of 35.02 percent (that is, at C = 3.5 . 10'2) is equal
to 1526.340.3 meters per second and is governed by the equation

c = 1450 + 4.206t - 0.0366t% + 1.137 - 103(C - 3.5 . 10-2)

whence

(3c?/3C) = 2c + 1.137 - 103 = 1.42 . c2

It is seen that 0c2/0C>>xc2. Further, (Bcz/BT)p,C =2c + 4.2 =
5.8 + 10-3 + ¢2 and Bcf = 2 - 107% . 2, that is, (acz/BT)p’C >>B . cZ,

Thus the magnitude Vbz for salt sea water considerably exceeds
the magnitude ¥p'/p. Hence the wave equation (2.133) may be assumed to
describe the propagation of sound in calm sea water in an entirely satis-
factory manner.
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CHAPTER TI1IT

MOVING SOUND SOURCE

14. Wave Equation in an Arbitrarily Moving System of Coordinates

In a system of coordinates
rest, the wave equation for the

Q/

2
w28
c t

Q/

It is assumed that the position
by the coordinates

(x,y,z,t) associated with the air at
acoustic potential ¢ is

(3.1)

‘ 38
0; A= + +
’ 92  dye 3z

of a moving source of sound is determined

x = X(%)
y = Y(t) (3.2)
z = 72(t)

Tn this case it is convenient to introduce a system of coordinates
(E,n,,T) connected with the sound source

E=X - X(t) n=y - Y(t)
t =z - 72(t) T=1t (3.3)
In this system of coordinates the velocity of a wind 3@ has the
components
ax
Vox = - it T T
N A 3.4
Yoy = "3 = " Vy (s.4)
_ a7z _ _
VOZ i v,
Equation (3.1) is then transformed to the system of coordinates
(z,n,¢,t). For this purpose
¢(X)Y)Z;t) = ¢(£ + Xff);‘n + Y(T): E + ZQY); T) (3-5)
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sc that
P _ 39 o9 _ 3¢ O® _ Op
X OE’ 3y  On’ dz ot
(3.86)
that is, V&y@ = viﬂgm = Vo
3 d >
5t 5 - (e
2 2 > (3.6')
0 >
32 F e O - () 0

Hence, the wave equation (3.1) in the system of coordinates &, n, t
will be
2
1 370 2 - oP
bo- =2+ 5 (T 2.

+ —
cl T2 o2
l (V;V (V)V)CP + —-(dt’ )(p =0
or, if ir place of the velocity of the source ?, the velocity of the
wind VO is introduced, then
z
l 6 2 > P 1 = ->
AP - — Va,V) = - —
512 C2 ( o} ) ét C2 (VO)V)(VOJV) =

1 {3Vo
—5@? V)“’ =0

This equatior may be considered As the equation for the propagation of
sound in a medium moving with velocity Vo(t), depending on the time but
not depending on the coordinates. In fact, it almost agrees with the
previously (Chapter I, section 5) derived equation (1.85) governing the
propagation of sound in a medium in which the wind bhlows with constant
velocity Vg- The difference lies only in the presence of the last term
containing the acceleratlon dvo/dt If it is assumed, however, that the
velocity of the wind V is a function of the time, an equation accur-
ately agreeing with equation (3.7') would be obtained in section 5. The
assumption of the presence of such wind is, of course, an artificial one,
but it is compatible with the equations of the hydrodynamics of an in-
compressible fluid. These equations, in the presence of external volume
forces pd, are

(3.7)

(3.7")

-

5Tt (VI = -%+ g; div V.= O (3.8)
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_>
With the assumption that V and p do not depend on the coordinates,
there is obtained
>
av
0o =
T = ¢ (3.9)

It follows that such motjon ig realized in a fictitious field of gravity
having an acceleration g = dVO/dt. Thus, in considering the sound field
of a moving source, the source is assumed as stationary; but it is then
necessary, in general, to assume that the acceleration of a variable wind
is conditioned by the "force of gravity" producing the acceleration

dv

= - 3 (3.10)

15. Sound Source Moving Uniformly With Subsonic Velocity

An arbitrary sound source moving with constant velocity 7 less
than the velocity of sound c¢ will be considered. The velocity v is
directed along the x-axis. Changing to a system of coordinates fixed
tc the sound source

¥F=Xx - vt n=y
(3.11)
t':Z T =t
vields a particular case of equation (3.7):
2 2 2 N2
Ap - L 0% L2y 9% XE ) g -0 (3.12)

? 3t oF omr  of o

and introducing, as was done in section 5, a system of coordinates con-
tracted along the x-axis

£ = 2 T =

% X - vt
A — n=
AR
1-p :} (3.13)

yields, in place of equation (3.12),

o - L, 2 o]
G 1 - g2 ¢
T T -G
A ‘ (5.13")
v
B = E _
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This equation agrees with equation (1.94),12 and the generalized theorem
of Kirchhoff (see section 6) may be applied to it. It is evidently suf-
ficient to restrict this report to the consideration of the sound of fre-
quency  (in the system attached to the source), so that

@ = yel®t (3.14)

On the basis of equation (1.108),

1 oy MR d e‘ikR)
Wraf{sa- = VST e
S

2iBk e~ 1kR

—==_ |0
4nV1 - g2 R*

where WP 1s the value of the potential at the point of observation P,

(3.15)

. ds

and the surface S encloses the source. Further

-BE¥* + R¥* (3.16)

R*:wfs*_{_ 2+ 2;R=
Ry

where R¥* signifies the distance (in the system &%, q, %) from the
point of ovservation P to the point of the surface S(Q :

e =] - £F
K P (3.17)
£ = CQ -

The wave field far from the surface S(R* - ®) is now considered. For
large distances from the point P from the surface, as is seen from

figure 13,
R* = RE + Ra + cos Opg + te- (3.18)

where R™ 1is the distance OF, RE is the distance 0Q, and GPQ is the
angle between OP and 0Q. On the basis of equations (3.18) and (3.17),

- —B€* + R¥* _ Bg§ + R% . —Bga + Ra - cos QPQ N
Vi -2 A1 - gt V1 - pE

121t is necessary to bear in mind that B 1is now v/c, whereas in
section 6, B denotes Vo/c; thus B 1in section 6 and here differ in

sign (because Vg = - v).

..=RP+A+..

(3.19)
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where

o _BEEE )
I
V1 - gl

-Bgs + Ra cos QPQ

V1 - B2 y

Substituting the value of R (eg. (3.19)) in equation (3.15) and neg-
lecting terms of the order l/R*“2 yields

-lkRP R .
= S A é—C—i)e'lkf\ R el S (3.21)
nRE on SO

The expression in braces depends only on the dimensions and form of the
surface and the angles determining the direction of the radius vector

OP. These angles are different depending on whether they are taken in
the contracted system 5*, ns £ or in the initial system &, 7, ¢ (they
differ by a magnitude of the order of B ) Let them be @, ¥ in the
system K, 1, € (and 9* X 1in the contracted system, respectively).

> (3.20)

With the system E, 71, £, the following may be written:
-ikR

P
W(EP’nP’gP) = E—E;—— - Q(6,x%) (3.22)
P

where £§ in R and R; must be expressed in terms of Ep. On the
basis of equation (3.14), the following is obtained for @:

R
R P
i t__é—

o (£8:mprtpsT) = & . Q(6,X) (3.23)

where Q(6,?) is the integral

3¢ .. O9Rq) _ika 2ipk ~1kA
4ﬂQ(9,X)=1/q(§E - iky =) + dS +———= [ Ve - 4dS
V1 - Bz (3.24)
S

The magnitude Q(6,X) determines the force of the sound source (it has
the dimensions of the volume velocity (cms/sec)) and its direction. If

Q(6,9) is developed in a series of spherical functions P?(cos G)eimX,
where 1 =0,1,2,3,***, and m =0 %1, %2, £3,** - 41, then

n

Q(e,0) = EE: j{: Qm Pl (cos 6) - o1y (3.25)

1=0 m=-
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When all the coefficients le, except Qy = Q, are equsl to zero, then

R
i (e - )

a source of zero order results in

e -
@(ngnP)QP:t) = R'l’g ) QO (3.26)
If, for example, only QlO is different from zero, then, since
Pg = cos 0O,
wfe-2)
i\t - =
e f
CP(EP;T]P:CP;*:) = * Qg cos 6 (3.27)

that is, a dipole source where the dipole is oriented along the E-axis.
The terms with 1 > 1 give multipole radiation.

Consideration will now be given to the dependence of ® on the dis-
tance. It is evident that the surfaces of constant amplitude VY diverg-
ing in direction by angles included in Q(6,9) will be the surfaces

RE = constant (3.28)

&
Vi1 . g?

amplitude will be the ellipses (fig. 14)

2
% 2 2
———= + 1% + t° = constant (3.29)
1 - g2

But R; = + qz + Cz, that is, the surfaces of constant

The surfaces of constant phase will be

Rp
a = w{t--—/ = constant (3.30)

From this it is seen that the phase velocity along RP is equal. to the

velocity of sound c¢. It is now assumed that the wave field @ is
observed from the point of view of a stationary cbserver. On account of
the motion of the sound source, Rp and, therefore, the wave phase a
will then depend on the time t 1in a more complicated way thar simple
proportionality to t. Hence the observer will not perceive this sound
field as a field of harmonic vibrations (although in the system attached
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to the source harmonic vibrations were assumed). Nevertheless, if the
changes in the magnitude Rp are not too rapid, the frequency w' can
be determined for the stationary observer as the derivative of the phase
a with respect to the time

dR
da 1 P
- 2 = — — — .
w T =@ 1-3 t) (3.31)
The computation of the derivative dRP/dt, on the basis of equations 0
(3.20) and (3.18), yields 3
)
* /o3 * /n¥
1 Bp = B+€P/RP - EE§ = - B Eiéﬁ[gi (3.32)
c dt qﬁfﬁf;g c dt (1 - g2)
whence 1 5;
+ B _R;*P
W' = w (3.33)
1 - pé
This formula gives an expression for the change of frequency caused by
the motion of the sound source, that is, the Doppler effect produced by
the motion of the source. If the observer is located ahead of the source,
the following is obtained from equation (3.33): .
o' = —2 (£t = ’*) (3.31)
1 -8 P P
and, if behind the source,
r w *
® = 1+ B (g}? - RP) (3.35')

Equations (3.33) and (3.33') are the simplest formulas for the Doppler
effect. Formula (3.33) gives the numerical expression of the Doppler
effect for any position of the observer. If magnitudes of the order of
BZ are neglected, the following is obtained from formula (3.33):

o' = o(l + B cos 9) (3.34)

where © 1is the angle between the velocity of the source and the direc-
tion OP toward the observer.

16. Sound Source Moving Arbitrarily but with Subsonic Velocity

The computation carried out in the preceding section shows that the
field at a great distance from a uniformly moving source has the form of
a field produced by a point source concentrated at the point O (see
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fig. 13), and the nature of the source is entirely concealed 1In the
function Q(6,9) determining the force and direction of the source.
On the tasis of this result the theorem of Kirchhoff may be avoided,
which, although it can be formulated also for a nonuniformly moving
surface, obtains in this case a form which is very complicated and
unsuitatle for applications. With the assumption that the source
moves along the trajectory

x = X(t)
y = Y(t) (3.35)
z = 7(t)

The true nature of the source will be disregarded and the assumption
will be made that the vibration is produced by a certain volume force
concentrated at the location of the point source. The result will not
depend on assumption (ref. 32). This assumption of the method of pro-
ducing the vibrations is expressed by the fact that in the wave equation
an expression determining the strength of the source is introduced on
the right side:

2z

— = - 41Q(x,y,2z,t) (3.38)
t

o/
S

AL =
el

(0%

In order to express the fact that the force Q is applied only at
the location of the source, use is made of the & functions introduced
in section 6

Q(x,y,z,t) = F(t) - 8(x - X(t)) - 8(y - Y(t)) - d(z - 2(t))
(3.37)

The magnitude F(t) gives the dependence of the force on the time in
the system attached to the source. Due to the introduction of the
functions, which are everywhere equal to zero except at the points
where their argument becomes zero, the force Q will be different
from zero only at the place where the source is located at the instant
of time considered. The solution of equation (3.36) is evidently
eguivalent to the solution of equation (3.7) with a stationary right
side:

Q(z,m,t,t) = F(T) « 3(&) - 8(n) - d(t) (3.37")
that is, to the finding of a singular solution of equation (3.7'). The

solution of the wave equation (3.26) with the right side present, as is
known, reads (see section 6)

t -
¢ (x,y,2,t) = Q(X"y"i & r/c) dv'! (3.38)
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where r = Véx -x)% + (y - y')% + (z - 2')¢ 1s the distance from the
sound source (the point (x',y',z')) to the point of the observer
(%,y,2). The evident physical sense of this solution consists in the
fact that the disturbance formed at the point (x',y‘,z') does not at
once reach the point (x,y,z) but is retarded by the time r/c; there-
fore the disturbance at the point (x,y,z) at the instant of time t

is determined by the disturbance at the point (x',y',z’) which was
Present at the instant of time t - r/c. Substituting now the value

of equation (3.37) in equation (3.38) yields

(D(X:YJZ)t)

(3.39)
:M@ 8(x' - [X]) * 8(y' - [Y])®(z' - [2]) ax' dy' dz

where the brackets denocte that the magnitude enclosed is taken at the
time t - r/c. In order to carry ocut the integration, new variables
which are arguments of the ® functions are introduced in place of
x',y',z':

A= x' - [X]
B=y' - [Y] (3.40)
C=z'-[z]

and dx',dv',dz' are transformed by the known formulas of integral
calculus

ox' dy' dz!
SE 3A A
1 t ]
dx'dyrdzt = | OX g%—gg— - dA - 4B - 4C

A - dB - dC (3.41)

The determinant T is readily computed from formulas (3.40), and
there is obtained

_ 1
B IO -3 B S 1.9 B A 1 B A
T Or T T dr T or T
1 (3.42)
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where [vR] is the projection of the velocity of the source ¥ in the
direction of r taken at the instant of time t - r/c. The value of T
is now substituted in equation (3.39) and the integration with respect

to A, B, and ¢ is carried out. On the basis of the properties of the
& functions, the result of the intefsration should simply be equal to the
value of the function under the integral at the point A =R =C = 0

(see section 6), that is,

@(x,y,t) =Z (LSJ_' I)A=B=C=O (3.45)

where the sum is taken over the points where A =B = C = 0. These
points are easily determined. From the conditions A=B=C=0 the
following results:

(x' - x) = [X] -x

fl

(vt -y) =1Y] -y (3.44)

(z* - z)

By taking the square of these equations and combining term by term,
an equation for obtaining the value of v at the point A=B=C =0
is obtained. This value is denoted by R. By the method indicated the
following equation results from equation (3.44):

(2] - 2z

2

R2=X_X(t_§)2+y-Y(t_g)j}2+{z-Z<t-§) (3.45)

or

£(R (3.486)
where 2

) = 0
f(R)I{X_X( g) ' y'Y(t_g)}2+{z-Z(t—§>2 _R2(3.47)

Since R > 0, only the positive root of equation (3.46) is to be taken.
On the basis of the equivalence of equations (3.44) and (3.46), the sum
over the boints A =B =C=0 1in equation (3.43) goes over into the
sum over the positive roots of equation (3.46). The distance r = R is
the effective distance. TIts physical meaning is illustrated by figure
15, where the trajectory of the source Q@ and the point of observation
P are shown. If at the instant of time t the source is at point Q,
the disturbance at the point P originates from the position Q', which
it occupied at the instant t - R/c, where R is the distance Q'P; the
instantaneous distance, however, r = \/(X_X(t))z + (y-Y(t))2 + (z-2(t))2
is equal to QP. Substituting in equation (3.33) the value r = R yields
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o(x,y,z,t) = Ez: F(t-R/0) (3.48)

/1 - p°
where, as is easily verified by equations (3.42) and (3.47),
+1 - g% - R* =R

If the velocity of the source is less than that of sound, there will be
only a single positive root of equation (3.46). 1In fact, in order that
the equation f(R) = O have a second positive root, f(R) must pass
through an extreme value, that is, df/dR must become zero. From
equation (3.49) it is seen that in this case [VR] must be equal to

¢, which is impossible. Hence, for v <g¢c,

_R
v C) (3.50)
R*-\/l - Bz

where R 1is the only positive root of equation (3.46).13 The case

v >c will be considered separately (section 20). From equation (3.50)
it 1s seen that the wave field for all motions of the point source is
expressed only through rR* and R, but the functions R (x,y,z,t)

and R(x,y,z,t), since they are obtained from equation (3.46), are,

of course, different. 1In particular for a uniform motion with velocity
v along the x-axis

f£(R) ={x - v( - %)}2 + y2 + 2% - Ry (3.51)

13In section 5 the solution has the form F(t + R/c)/R*. The dif-
ference between them and equation (3.40) is only an apparent one. In the
first place, the factor +/1 - BE did not enter for the reason that in
section 5 there was no interest in the absolute strength of the source.
Further, equation (3.31) has also a formal leading solution. Thus, in
equation (3.40), Q(x',y',z',t + r/c) can be taken. The chosen sign +

yields, in place of equation (3.40), ¢ = F(t + R')/R%/1 - p2,

(3.49)

= =

¢(X;YJZ)t) =

R® « 1 - Bz = |l + [VR]'/cl, where {vg]' is the value of vg at the

instant t + R/c. In equation (5.46) the sign before R would likewise
change. The value of R would be R" (see fig. 15). From this it is
seen that if equation (3.46) has the solution Rl = R, it-also has the
solution R, = - R". Hence, in order to obtain a lagging solution of
equation (3.46), it is necessary to take R > 0 if starting from

Qlx',y',z',t - r/c) while it is necessary to take R < 0 1if start-
ing from Q(x',y',z',t + r/c). But this root is precisely equal. to 'Rl'
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From equation (3.46) the already familiar result is obtained

\

R=M

V1 - B2

R = %2 42, 42 F (3.52)

x - vt

l—Bz )

g% =

]

The solution obtained (eq. (3.50)) represents the field of a
zero source. By combining such sources, however, with the proper phases
and disposing them according to a known method, a wave field having any
directional characteristic can be represented. For example, two zero
sources of the same strength but of oppostie phase placed at a small
distance from each other (1< R) will give a dipole.

If the source began to function at a certain instant of time, for
example, t = O (that is, if F(t) = O for t < 0), there would be present
a wave front, that is, o" a surface which would be reached by a distur-
bance starting out from the source.

From each position of the source a wave starts out at time t at
the distance R = ct. Substituting this value of R 1in equation (3.46),
the equation of the wave front is obtained:

{x - X(O)}2 + {y - 1{(0)}2 + {z - z(o)}2 - PP (3.53)

that is, a sphere of radius c¢t with center at the point where the
source began to function (that is, at x = X(0), y = Y(0), z = z(0)).
Thus, for v < c, the moving source is at all times located within the
sphere formed by the wave front (fig. 16).

The results obtained for the sound field of a moving source are, in
many respects, in agreement with the known results of Lenard-Wichert for
the electromagpetic field of a moving poin® charge (electron).

17. General Formula for Doppler Effect

If the source of sound is assumed harmonic and having in its own
system the frequency w, the form of ¢ (eq. (3.47)) is restricted:

m(tﬁ)
C .
10

Q " e . Qe
R*Y1 - g2 R*1 - g2

(3.54)

w(XJY)Z:t) =
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From the instantaneous frequency ' perceived by a certain observer
not moving together with the source, the derivative of the phase «a
with respect to the time is understood

o = o w(} -2 dﬁ) (3.55)

at - c dt,

This formula must be considered as the most general formula for express-
ing the Doppler effect. It was vresented earlier for uniform motion;

it remains true also for the general case of motion. 1In section 15,
however, the question of the limits of validity of this formula was not
considered. For an observer not attached to the source, the spectrum
of the wave field ¢(x,y,z,t), notwithstanding the harmonics of the
source, will appear as continuous and the intensities of the individual
frequencies will be determined by the amplitudes ¥(x,y,z,») in the
expression

+Q .
o (x,y,2,t) "'f Y(XJyJZJa)')elw'tdﬂ)' (3.56)
~a0

It may be asked under what conditions the action of this entire
frequency spectrum is equivalent to the action of a single one ' which
depends on the time according to equation (3.55). The answer to this
question is simple and is connected with an analysis of the work of the
sound receiver used by the observer. Let this receiver be a certain
resonator with a tire constant equal to T. In such a resonator the
frequencies will be established in time T. If the time dependence
of the force acting on the receiver is written in the form

im't iw't
e = Ae

A (3.57)

@(X;Y)Z)t) = :r_%: .

where ' is the "instantaneous" frequency (eq. (3.55)) and A is
the "instantaneous" amplitude (A = Q/R*(t), the dependence of A and
@' on the time may be neglected under the conditions that

(1) A varies slowly by comparison with the changes of phase w't,
that is,

1

A af

dA

dt

(2) The frequency ' changes little in the time T during which
the frequencies are being established

<< ! (3.58)

%‘fﬂl'. C T << gy (3.59)
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From the preceding it can be seen that the Doppler effect may be chserved
only for sources with sufficiently large damping (small T). These con-
ditions will be analyzed in more detail; but now, if they are assumed
satisfied, the Doppler effect will be considered for the case of an
observer and a sound source moving uniformly and rectilinearly but at

a certain angle to each other. On figure 17 is shown a source Q mov-
ing with velocity ¥ and an cbserver P moving with velocity V. The
velocity of the observer relative to the source will be ® = - ¥, In
order to compute R, equation (3.30) is used. Substituting in R the
value &% ang passing from meotion along the x-axis to motion along any
direction (which is done by simple rotation of the system of coordinates)

yield
. 2
(%, /) +’\ﬂ2(1 _ v2/c?) +(32, 1-’)
R = o (3.60)
(1 - ve/e®)
where ; is the instantaneous distance QP = ;? - Ta. Now, dR/dt can

be computed, taking into asccount the fact that both the source and the
observer are moving, so that

?P = {;'t + ?8
(3.61)
Fn = ¥t + 79

o) Q

A somewhat long but simple computation leads to the following result for

c
w' = wdl - (3.62)
2
1l - VZ/C
where the vector @ 1is equal to
7 - LA— (5.63)
- 3.63
-
Vrz(l - v2/e?y 4 & 7)° Z)
c

This 1s the most general forrmula for the Doppler effect for a uniformly
moving source and observer. From this formula it is seen that, if they
are relatively motionless (3'= 0), ' = w. For a motionless observer
(V = 0) there is obtained

-
1+ iﬁxgzl
e A (3.621)

1 - vg/c2
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and for a motionless source (; = 0)

-0 2 > -
w' = a)(l - _f.l_:V); 0-r (3.62")
r

For an estimate of dw'/dt and dA/dt let A = l/r. Condition (3.58)
then reduces to

dr
It

.:L <mw' or r>> l'- (3.58')
T @

If the observation is made in the wave zone, then r >> ch/m‘; hence
equation (3.58) is satisfied in all those conditions where, in general,
the initial formulas derived for the wave zone are applicable. The case
is otherwise with condition (3.59). If dw'/dt = - d%R/cdt? is computed,
with use of equations (3.60) and (3.61), then with an accuracy up to a
magnitude of the first order with respect to v/c and V/c there 1is

obtained ( u )
__n
T <<rc M ¢/ (3.59")

2
Uy
where u is the projection of the relative velocity on the direction
of source to receiver and uy 1s the projection on the direction per-
pendicular to this line. For a relative velocity u of the order of
¢ for certain positions (small uq), the magritude of the time constant
T should tre much less than r/c and condition (3.59') may be very re-
strictive. When this condition is violated, the sound of the harmonic
of the source itself will be received as an impulse containing different
frequencies continuously distributed.

18. Sound of an Airplane Propeller

The sound of an airplane originates fundamentally from two sources:
the propeller and the engine exhaust. The sound of the propeller like-
wise hag a dual character. In the first place, a rotating body, such
as the propeller of a motor, gives rise to periodic changes in pressure
and velocity of the air near the plane and swept by it. These periodic
changes of the air are accompanied by small compressions and rarefactions
which are propagated in the form of a sound wave. The sounds of this
origin are called rotational sounds .14 TIn the second place, from the
propeller blade, as from any moving body in the air, vortices are shed
which likewise impart periodic impulses to the medium surrounding the
propeller.

These periodic impulses are the cause of the second sound, the so-
called vortical sound. In section 25 the origin of this sound and its

14This term was introduced by E. Nepomnyashchii.
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fundamental properties will be considered in detail. For the present,
however, the discussion will be restricted to pointing out the fact that
the frequencies of this sound are very high and are strongly absorbed in
the air so that in observing the sound of a distant airplane only the
reotational sound, and at that its lowest harmonics (and also the lowest
harmonics of the exhaust), are heard. Hence, it will be entirely rea-
sonable to consider in this section only the rotational sound. 1In fig-
ure 18 is shown the propeller of an airplane and its enclosing surface

S on which the disturbances brought about by the motion of +the propeller
will be studied. The faces S' and 8" of this surface (fig. 18) will
be considered so far removed from the surface of rotation of the pro-
peller that the motion of the gas on this surface may be assumed as
linear (with the exception, of course, of the general forward motion

of the air). .

The possible frequencies of the rotational sound will be considered
first. Let the propeller have n blades and make N rotations per
second. Tt is then evident that at each point on the surface 8, due
to the rotation of the propeller, the state will be periodically repeated
nN  times per second so that the fundamental frequency (cyclic) of the
rotational sound will be

wy = 2moN (3.64)

and its harmonic will be W, = wym, where
m= 2,3,4,...

The computation of the intensity of the sound and its direction char-
acteristic for these frequencies for a given shape of propeller and

for a given speed presents exceptional difficulties.l® Hereinafter

the discussion will be limited to the investigation of the most Feneral
features of this sound and to qualitative estimates.

After the control surface S 1is shifted to the region where the
periodic disturbances have become linear, the properties of the potential
and its derivatives on the faces S' and 8" of the surface S will
be considered. A cylindrical system E*, 0, X, rigidly attached to the
airplane so that ¢ = @(£%0,x,t), will be taken as a system of

coordinates.

Since the propeller rotates uniformly in the same plane in which
the angle X 1is measured, X and t should enter ¢ only in the com-
bination t - xﬂn, where w = 2nN = wo/n is the angular velocity of
rotation of the propeller.

15See note, p. 93.



%0 NACA TM 1399

Expanding ¢ 1in a Fourier series with respect to the time t with
period T = Zn/wo yvields:
+® N

o (E%,0) e-im(wgt-nx)
M=
- ? (3.65)
Y(ER, p)r o T IX Hapt
1= W,

‘P( E*)O;X)t)

i

In the following it is sufficient to consider separately each of
the harmonics

o = wm(i*,o)ei(wmt'm'n'x) (3.66)

The theorem of Kirchhoff (section 6) is now applied to the potential of

any of these harmonics and the wave field ® at a point P 1is considered

at some distance from the airplane. According to equation (3.33),
i (ot -knRp)
¥
Rp
where g;, Np» CP are the coordinates of the point of observation P,

0n(Eppstpst) = (3.67)

and Q, on the basis of equation (3.24), is equal to
o oR -ik A
m . Q iky
4nQ, = - ik ST ¥n ) e - ds +

21Bkm L]“ 1kmA
Viog?

(3.68)

where B = v/c, v is the velocity of the airplane, km = mm/c, and,
according to equation (3.20), the magnitude A is

-BEE + RE " cos Opg
V1 - g2

The symbol Q 1s a point on the surface S (fig. 18). From the same
figure it follows that

A= (3.69)

cos Bpg = cos GF - cosa + cos(Pp-Pg)sin 6% * sin 95 (3.70)

= /pz + h*z ga‘ = h* (3-70,)
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where H* 1s the distance to the control surface, p = j/nz + cZ is the
distance from the axis of the propeller, 6% and ®p are the angles in

the polar system determining the position of the point of observation P,
and QQ and wQ are the same angles for the point Q of the surface

S' (or 8"). It is evident that cos 6* = h*/q/p + h*%  ang

%
sin 0g = D/-VO + n¥*2, Substituting this value of A 1in equation (3.60)

and VY, from equation (3.66), the integration with respect to @Q can
be carried out. It is here necessary to bear in mind that
14
L//\ iz cos(Xx-x')-im-'n.y’ -im.n¥X (3.71)
e dyx' = 2nie . Imn(z)
0

where T (z) 1is a Bessel function of the first order (m - n). With

use of equation (3. 71; the follow1ng is obtained from equation (3.68)
for the surface g (E

T
' ﬂmmﬁl/ﬂo kp p + sin 6% y
4ﬂQm = 2nie pdp *+ I
o TN V- 6P

)
i-—————E.(B—cos oF) 3
e VIB ( m) ) Y (3.72)
RIS r*=h
1
21Bky,

iky Yy * cos 6F + ———— Y

Vi-ge " )

is the radius of the control surface, which may be equated

where rO

to the radius of the propeller, and the magnitude BHap/én = 5H§Q/BE is
replaced for large RPQ by cos GP. For the surface So a similar
expression Q' 1s obtained which differs from equation (3.72) in the
substitution of -hg for &%  Combining Qy and Qp vyields

iy
‘ -im.nXp 0 km,' p * sin 9; A
1
Qm=§e p-dp-Im.n X

0 A1 - g2

: oV £1Bkp

: s ) 21Bk 3
X ( m : *\ .
oo | + [—=—= + ik cos 6% (v )
l: )2 V1 - p? mE_J y
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On account of the smallness of the magnitude kmh*, the phase multipliers
x5 ixo . : . %
e and e may be expanded in a power series in kph

iX . h* N
1 i
e =1 +-—j§£—4£— (B - cos 9*) + v
= P
Vvl - B
> (3.74)
i ik *
R s s By U S
V1 . g? )
The following is then obtained:
r
-t 0]
E do x )
=7 e do
0
%y o sin 6% >
Tnn T [Ag(p) + B (o) cos 6% + (3.75)
1 -8
2 gt -
Cple) cos®6p + J ‘)

where Am(p) may be considered as the strength density of zero-order
sources distributed in the plane of rotation of the propeller

_(3¥n\ [V 2iky ~N
Am(O) - (SEE)l (BE;>2 + 1/5_:_55 [(Wm)l - (Wm)z] +
Cagp [rowmy (a_wrg) . *]_
W/I—:—EE (ag*)l hl + % 0 hg > (3.76)
2p%k 2
[ (V) B¥ + (¥y), b¥]
Vi L el J

the magnitude Bm(o), as the strength density of dipole sources

Bp(o) = - iky [0 )y - (¥)5] -
(3.77)

—

1km (aWI:) h]'*f + (%) . h%('
V1 - g2 |\ag¥/] 3E"),
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the magnitude Cm(p), as the density of quadripole sources

2
Bk
V1 - g?

and so forth. Therefore, the unknown functions wm and me/ég*' are
calculated now for E* = h§ and E* = - b¥. These functions are

independent of each other because the value of any one of them on the
control surface S determines uniquely the solution of the wave equation.
They can be given only in those casges where it may be assumed from some
preliminary considerations that the assumed values of ¥, and me/5£*

Cp(o) = - (G)y B + (4y)p + B3] (3.78)

approximate the true values and are thus in agreement with each other.
The computation of these magnitudes presents the fundamental problem for
the computation of the sound of an airplane.l6 It is necessary to call
attention to the following circumstance. In the integral (3.75), the
magnitudes A, B Cps*** must not change their gigns as functions of

o, at least in the regicn of most effective values of o (in the working
part of the propeller blade). It is easily seen that the same refers
2lso to the magnitude I (kp sin Gg/qu - g2). In fact,

kpo = 2mnmNe/c = nmv(c)/c, where v(0) is the rotational speed of an

arc of the propeller. The roots Xmn ©Of the equation Imn(x) =0
possess the property that Xgn > mn, but v/c < 1. Hence, in the range
of integration 0 < p < Tos the argument Iyn 1is less than xﬁn.
Because of this Imn can be moved outside the integral sign, replacing

o by a certain effective value 0= RO. There is then obtained
. 3 *
5 -im-mPp R2r kmBO sin 6
Qm =ax € * ™gin.n
/1 - B2 (3.79)

Ay + B, * cos 6p + Cp * cos O; + e

16Attempts to compute these magnitudes have been frequently made
(see the references at the end of the chapter, in particular, the book by

E. Nepomnyashchii, "Investigation and computation of the sound of an air-
plane propeller"). These computations are not, however, entirely reliable
because they make use of the relations of linear acoustics in the nonlinear
region. 1In particular, no account is taken of the presence of a constant
air flow; the magnitude pd¥/dt (where ¢ is the air density) is equated
to the pressure p on the blade of the propeller, whereas

D= /ot - o ¢ (W)E/2

and so forth. It is therefore difficult in this way to attain anything
more than agreement in the most general features,
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- - - .
where A, By, Cp,*°+ are mean values of these magnitudes over the

length of the propeller blade. Since the magnitudes Ap, Bm, Cm»
represent the coefficients of expansion in the small parameter kmh*,

the value of Kﬁ among the terms in braces in equation (3.79) should

be predominant; that is, there is a source of zero order. Hence, the
directional characteristic of the sound of the airplane propeller will
be determined essentially by the factor I, while the remaining terms

in equation (5.79) will only deform somewhat and displace the directional
curve given by this factor. Since not only do the roots of the equation
Imn(x) = 0 exceed mn Dbut also those values of x'' which correspond

mn
to the maximum I (x), the expression Imn(kﬁﬁo sin 9*/1/1 _ BZ) will

monotonically increase with increase in 6% +to n/2 and then drop to
0 for 6% = n. Thus the maximum of the radiation will lie at 6% = n/z,
that is, in a plane perpendicular to the line of flight of the airplane

(in the plane of rotation of the propeller)_17

This curve is given in figure 19 {(curve a). In fact, there is
generally observed an assymetry of the directional curve (curve b of fig.
19) which indicates that the part played by the dipole radiation can not
be entirely ignored in comparison with the part played by the radiation
of zero order. Both curves refer to a system of coordinates which are
at rest relative to the airplane. Now the intensity in the sound spec-
trum of the propeller will be determined. For this the magnitude Qp
in equation (3.79) has the sense of a volume velocity. Its fundamental
term contains the magnitude A, -equal approximately to the sum of the
velocity components of the air normal to the surface S. These velocities
are produced by the compression of the air in the motion of propeller
blades and may be represented in direct dependence on the velocity of
motion of these blades.

Consider the velocity component u(t - ¢ /w,0,E") normal to the

surface Sy. The same expansion (eq. (3.65)) in a Fourier series is
applicable to it that applied for ¢, namely,

u(t - U’—g,o,a*)

=Z u (p,&%) eim(wot—nw) (3.80)

m

17Phe difference between 6 and 0¥ s ignored since these angles
differ by a magnitude of the order of B .
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whence {nmX
Um(pyg*) ‘e
21

-imp .t
u (t - X 0, ) e 0 . at (3.01)
0 w

=]

If the width of the blade at p 1is equal to 1(p), it may be assumed
that u as a function of time has the form of an impulse lasting over
the time T = 1/v = 1/wo, so that u = Ug for 0< 1<+t and u=20
outside this interval. Carrying out the proposed integration in equa-
tion (3.81) yields

- ) (3.82)

From this it is seen that the amplitude of u, very slowly decreases

with increasing m so that the spectrum of the sound of the airplane
should be very rich in harmonics, as is actually observed to be the

case.le

u (p,8%) + e X

(e—iUﬂDT - l) iUO (e

o

u
- __0
T 1wy 2mm

19. Characteristics of Motion at Supersonic Velocity.
Density Jumps (Shock Waves)

Before the problem of immediate interest, that of sound radiation
from a source moving with supersonic velocity, is discussed, considera-
tion will be given to those special phenomena which arise in the flow
about a body with velocity of motion exceeding the velocity of sound in
the medium c.

The essential difference between a flow with v >c¢ and a flow with
v< ¢ may be considered from the equation for the velocity potential @
describing the flow of a compressible fluid., According to the general-
ized equation of Bernoulli (eq. (1.27')),

dp o

we [ 2-Z L (on) (3.85)

18The assumptions herein were tooc simplified, of course, to expect
anything more than a qualitative conclusion. The computation of the form
of the impulses is carried out in the book bv E. Nepomnyashchii. As pre-
viously pointed out, however, it would be necessary to choose values of
the impulse on a suitable control surface, whereas generally their values
are computed in the plane of the propeller.
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On the other hand, the equation of continuity reads

9 _ 4iv(oY8) = 0 (3.84)

2
. > . _1dpdp_c” Jp c
(since v = - ). Noting that ow/dt 5 T 5% = 5t and Vv = = ve
and in equation (3.84) expressing Bp/at, vp in terms of ow/ot, gw, and
w in terms of & with the aid of equation (3.83) yields

1 P 1 93 2
o R

{\7@, v[g% - % (Vé)z]}= 0 (3.85)

If a local system of coordinates x, vy, and 2z 1is introduced such that
the axis ox 1s directed along the normal to the surface & = constant
(i.e., along the direction of the velocity v at the point considered)
and the axes oy and oz lie in the tangent plane, equation (3.85)
assumes the form

2 2 2 2 2 z
( V).aqs o' 0%  zv 3% _Lﬂ=o (3.86)

[V %4
[aV]

1 - = + + .

el %%  dy% 2% 2 T dtdx  cf ot?
If at a point of the flow the veloc1ty v exceeds the local velocity of
sound c, the coefficient before 023/dx® becomes negative so that the
coordinate x assumes, as it were, the same status as the time; the
equation of elliptical type relative to the coordinates turns into an
equation of the hyperbolic type. These two types of equations fundamen-
tally differ from one another. The hyperbolic equation has discontinuous
solutions which are not uniquely determined by the boundary conditions.
A simple example illustrating this fact will subsequently be given. In
fact, in the motion of a body at supersonic velocity, there arise in the
medium the so~called density jumps or shock waves. These jumps are
propagated over a great distance from the moving body alcong surfaces
which for a small magnitude of the jump approximately coincide with the
characteristics of equation (3.86). 1In the density jump the state of the
medium changes discontinuously. Such discontinuous change is undergone
simultaneously by all the magnitudes characteristic of the medium: the
velocity, the density, the pressure, the temperature, and the entropy.
By studying the propagation of the sound from a source moving with super-
sonic velocity, it would be systematic to start from that state of the
medium which is produced by the motion of the source and to consider the
sound as a small disturbance. However, at this time general methods of
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solution of the problem of the supersonic flow about a body are not
available; and, therefore, no theory is available which Permits finding,
in this case, the fields of velocity and pressure and determining the
magnitude and position of the density jumps which arise with supersonic
flows. For this reason the discussion will be restricted to the consid-
eration of certain partial problems and to a qualitative analysis of the
phenomena. Consideration will now be given to the simplest cases of
supersonic motion which permit an uncomplicated mathematical analysis.
The profiles of a thin infinitely long wing are shown in figure 20. The
flow in this case is two dimensional and its velocity will be assumed as
v >c, If it is assumed that the wing is thin (and the angle of attack
small), the disturbance imparted by it to the flow rav also bhe assumed
small. Corresponding to this assumption, the potential é(x,y) is
represented in the form

P = - vx + 0(x,y) (3.87)

where ¢ 1is a small correction and the higher powers of it may be
neglected. Substituting equation (3.87) in equation (3.86) and neglect-
ing terms containing higher povwers and derivatives of o yield

2 82 52
1 -1 )22 2% _ 4, 3.88)
( c2> dxe  Jy° (

where ¢ is the value of the velocity of sound in the undisturbed flow.
Setting

x=7T" B2 -1 [3=3C’->1 (3.89)

gives, in place of equation (3.79),

2 2
09 O%
TS5 -T5 = .9
52 3 0 (3.90)

As also follows from the general theory, an equation of the hyperbolic
type is obtained. If 7T is considered as the time, it coincides with
the equation for the propagation of waves in one dimension (y) with a
velocity equal to 1.

The general solution of this equation has the form

=1 (T -y)+f (v +7) (3.91)
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The disturbances, giving rise to ¢, are disposed (along the wing profile)

from T =0 to T = 1/+/p% - 1 and are propagated according to equation
(3.91) without change of their intensity along the lines y =T and
v = - 1 (for example, PQ and P'Q' on fig. 20(a)). The assumption that

fs % 0 for y >0 would mean that the disturbance would travel ahead

of the wing at any large distance. This contradicts causality and,
therefore, it is assumed that fp = 0 for y > 0 and for the same

reasons fl =0 for ¥y <« O.19 Then

1 (t - v) y >0

¢

and

o= o (T +) y<o0 (3.92)

With this choice of solutions the disturbances concentrate in the strips
OABO' and OA'B'O'. The inclination of these strips 5 determined by the
equation

Vo= &g = & e (3.93)

so that the angle € = AQO', called the Mach angle, is equal to

sin €= = = = (3.94)

B
The form of the functions fy and f, can now be connected with the
form of the wing profile. Denoting the normal to the surface of the

wing by 'K, the following condition exists on the surface of the wing:

%% = - v + cos(x,n) + g% cos(y,n) + g% cos(x,n) = O (3.95)

which expresses the fact that the components of the velocity normal to
the wing surface are equal to zero. If the wing profile is thin and the
angle of attack of the elements of its surface is everywhere small,
cos(x,n) = 0 and cos(y,n) = 1. Hence the condition of =quation (3.95)
can be approximetely written as

+ (%% =0 = v cos(x,n) (3.96)

lgIn this supplementary requirement there is also expressed the
property referred to above of equations of the hyperbolic type.
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The sign + holds for the upper surface; the sign - for the lower
surface. Substituting ® from equation (3.92) yields for the upper
surface
ar afq (t)
1 1
Q57> =-—3F =V cos(x,n) (3.97)
¥y=0

and since cos(x,n) is given on the wing profile as a function of x,

and therefore also as a function of T, there is thereby determined the
potential fl(T) with an accuracy up to an unknown constant. In the
same manner there is also found f2(t). From equations (3.92) and (3.97)
an additional velocity on the x~-axis is obtained

do df{ (T - y)

Avg = - 2 = - = cos (x,n) (3.98)
o aw~/g2 o1 Vp? -1

where cos(x,n) is considered as a function of (v - ¥y).

With the aid of equation (3.83) the change 1in pressure Ap = p - p

as compared with the pressure in the undisturbed flow Py can also be
obtained. Thus, for small Ap, from equation (3.83)

6]

Lp OB va)? vZ
_56_&_1_2_+—2- (3.99)

The constant v2/2 is so chosen that in the undisturbed flow, where

@®)2 x v& and /Ot =0, p = py- Substituting & from equation (3.77)
and neglecting higher powers of @ and powers of the derivatives of ¥
yield

Np = v o0 (3.100)

2
Ap = —E— ¢ cos(x,n) (3.101)
pZ - 1

At the point x = 0 (the point of meeting of the flow with the
profile) cos(x,n) 2 0, and at the point of departure (x = 1) cos(x,n) £ O.
Outside the interval O < x < 1, cos(x,n) = O. Hence the pressure Ap
and the velocity Av have the form showrn in figure 20. At the point of
approach a discontinuity of the motion occurs. The resistance of a thin
wing computed in this manner agrees well with test results (ref. 34).

Both the pressure Ap and the velocity Av, maintain their values
constant along the line y = 17T, that is, along lines inclined to the
flow by the Mach angle € (sin & = c/v).
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The solution presented above, demonstrating the presence of dis-
continuities in the supersonic flow about a body, is suitable essentially
for infinitely small density jumps. The theory of density jumps of
finite magnitude can not be obtained from a consideration of only the
differential equations of hydrodynamics since these equations lose their
valldity precisely in the region of discontinuity and must be replaced
by suitable boundary conditions. 1In order to find these, a density Jjump
of the form represented in figure 21 will be considered; equation (3.83)
is the region of the undisturbed medium and equation (3.84) the region
of the jump. Let the jump move with the velocity V in the positive
direction of the x-axis. It is natural to take a system of coordinates
in which the jump is at rest. 1In this system the velocities of the gas
along the x~-axis in r=cions of equations (3.R3) and (3.64) will Te

3343

Uy = =V
1

(3.102)
U2=U2-V

where Up is the absolute velocity of the gas in the region of the Jump.
To derive the conditions at the jump it would be necessary to rewrite the
fundamental equations of hydrodynamics in integral form. As was explained,
however, in chapter I, these equations represent no other than the three
laws of conservation and this fact may be utilized by applying these laws
directly to the region of the density jump. The matter, momentum, and
energy flows on both sides of the density jump must be the same. Making
use of the expressions for these magnitudes (egs. (1.9), (1.10), and (1.11))
and neglecting for the present the viscosity and the heat conductivity,

the law of conservation of matter is obtained

Clul = OzUz (3 -103)

where 07 and oo are the density of the gas before and after the jump.
Further, the law of the conservation of momentum is obtained

2 - oul
P1UT Py = ppuz + Dy (3.104)

where p; and P, are the pressure before and after the jump, and
finally the law of the conservation of energy is obtained

1 3 1 3 :

—2‘ plul + olElul + plul = ? szz + DzEzUz + szz (5-105)

where Eq and E, are the energy of unit mass of the gas before and

after the jump.
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With the use of equation (3.103), eguation (3.105) may be written in
the following form:

1 2 1l 2
ZUl W =3 up +wp (3.1051)

where w=FE + p/o is the heat function. From these three equations are
obtained

oz Dy - D
u = - g2 2Ly (3.106)

up = - (3.107)
and also with the use of the equation for an ideal gas
B o= 1 r w=—L_2 (3.108)
- r-1 o0 Yy-1p

4
ol R) e fey) e

Equations (3.106), (3.107), and (3.109) permit computing all the data
referring to the density jump as soon as the pressure Py and the den-
sity of the gas 7 ahead of the jump are given, and also one of the

magnitudes characterizing the jump, for example, Pse.

In conclusion, the change in entropy occurring in a density jump
will be computed. From equation (1.34) it follows that the entropy of

unit mass of the gas is equal to

p (Po\
S = 8p + cyln = ——) (3.110)
Pg \ P
From this equation the change in entropy is obtained
Py fop\V P2 P2
Sz - 8p = ¢yln == (=) =c ln ==+ c In — (3.111)
P1 \A1 P 1

207his relation was esrlier established by Rankin (ref. 36); see also
reference 37,
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If use is made of the relations of Hugoniot, it is not difficult to show
that for a density jump this magnitude is greater than zero so that the
processes in the jump have an irreversible character. It is precisely

for this reason that it is impossible to restrict oneself to the dif-
ferential equations of hydrodynamics which do not take into account such
processes. The motion of the jump, as 1s seen, proceeds in the direction
of increasing entropy since the gas has less entropy before the jump

(eq. (3.87)) than after it (eq. (3.87)), and the jump moves in the dir-
ection from (2) to (1). The velocity of this motion V = - uj 1is readily
found from the preceding equations if po> and pp are eliminated from

equations (3.106) and (3.109). There is then obtained

ui = v = %; [(r +1) %— + (v - 1)] (3.112)

where ¢ 1s the adiabatic velocity oquound in the gas at rest (eq.
(3.84)). Since P, > py, tnerefore V© > cZ; that is, the jump always

moves with a velocity greater than the velocity of sound in the medium in
which it originates. The relations herein derived will be used in
analyzing the work of a sound receiver moving with a velocity greater
than the velocity of sound in the medium.

20. Sound Source Moving with Supersonic Velocity and Having
Small Head Resistance

In this section consideration will be given to the radiation of
scund by a source moving with velocity v > ¢ and having a small head
resistance. The theory of such a sound source is, to a considerable
degree, analogous to the theory presented in section 19 of an infinitely
thin wing. The sound source will be imagined as located on the body
(fig. 22). The profile of the body will be given by a curve in a
cylindrical system of coordinates (p,&,x)

o = 0o(¥) (3.113)

The cross section of the body no% will be considered infinitesimally
small.

It is assumed further that the surface of this body or a part of it
performs small vibrations of freguency . This vibration will be the
sound source. The potential of the flow & will be given in the form

P=-vx+0y+0 (3.114)

where v ¢ x 1is the potential of the undisturbed flow, ® is the
potential produced by the motion of the body, and ¢ 1s the potential
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produced vy the vibratione of the surface of the body (it is proportional
it

to e ).

coordinates connected with the body it does not depend on the time.22

The assumption of the small cross section of the body permits restriction

to the linear theory. 1In virtue of this the solution will te a super-

position of the steady solution and the unsteady sound field. The prot-

lem thus reduces to the determination of @. TFor solving this probler

the method of sources will be used. The field of a point source of

sound moving with supersonic velocity will first be determined and then

a sultable distribution of these sources over the surface of the hody of

revolution will be taken. In a system of coordinates attached to the

body let there be a point source at the points EO’ Mg Co lying or the

The potential ¢O is of no interest since in a gystem of

surface of the bhody under consideration. In a stationary system of
coordinates, the coordinates of this source will be

X = vt + go
Y = no
Z = CO (3.119)

The strength of this source dQ will be assumed as infinitesimally small
and proportional to an element doo = ano . dEO of the surface of the

body on which it is located
9Q = a(t,&y,mp60) * doy * B(x - vt - E ) x
& - - .
(v no)(z go) (3.116)
In this formuls the small magnitude
dF = q(t,¥5,ng,t0)dog (3.117)

has the same meaning as F 1in equation (3.37). In correspondence with
equation (3.43), the solution of the point source will he written in the

form
Xo(x,¥,2,t) = EE:__lﬁiEEQ___ (3.118)
3¢

R Vp? -1

wrere [q] = q(t - R/c,go,no,go) and R and R*® are as previously

deterrined from equations (3.46) and (3.42). However, in the case v > c

2lppe potential @, wmay be determined by a method similar to that
presented in sectinn 19 for a thin wing. See T. Karmdn, refercnce 34,
page 81.
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the previous assertion on the uniqueness of the positive root of equation
(3.46) is n~t true. Solving equation (3.46)

f(R)E{f—v( -%)—50}2+

? 2 2
(v -mg)" + (2 -¢5)" -R =0 (3.119)
. )
yields . . %
1R” - BE
R = ——— R* = /p¢2 - o2 (3.120)
Vg2 -1
where
L X - vt - go ) ¥
&= = .
Vet -1 Vet -1
n=y -~ Mo
¢t =2 - QO (3.121)
where, as will soon be shown, both roots of equation (3.120) are greater
than zero. From expression (3.120) for R¥ it is seen that must

be greater than 02 so that the entire solution lies within the cone
g*2 _ p2 >0
that is,

S SN (3.122)

e - 1

The generators of this cone start from the point vt + 50, ngs CO’ at
which the source is located, and, as is seen from equation (3.122), are
inclined to the velocity v (to the axis &) by the Mach angle e

sin € = £ (3.123)
v

With the possibility of a disturbance ahead of the excluded source,
a restriction to the region & < O (fig. 22) is necessa.ry.22 But -p&¥*
for E¥ < 0 1is always greater than RY. Therefore, R is positive and
both solutions (eq. (3.120)) are lagging ones. The physical meaning of
this double solution lies in the fact that at each point P (fig. 23)
enclosed within the Mach cone two sounds arrive. If at the instant con-
sidered the source occupies the position Q, then Q' and Q" are two

22A.similar assumption was made in the theory of a thin wing when
fo for y >0 and 1 for ¥y < 0 were neglected.
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effective positions of the source from which the sound arrives at the
point P at the instant +t. At subsonic velocity there is only one
effective position.

The solution for a point source does not have significance in the
immediate neighborhood of the source (where it becomes infinite). From
the computations it is seen that at supersonic velocity of the source
there exists not only a singular point but an entire surface (the Mach
cone) at which the solution becomes infinite. It follows that with
restriction to a point source, it is impossible to assign a meaning to
the solution (eg. (3.118)) not only near the source itself but also near
the Mach cone. However, use may be made of this solution for construct-
ing the field of a distributed source and also for a qualitative analysis
of the phenomena for supersonic velocities. "Assuming that g depends
harmonically on the time t,

1 = 9p(E,mgsto)e " (3.124)

a solution representing the field of an element of surface of the hody
is obtain~d from equation (3.118)

R%) Ry
aodog el S tio\t-— (3.125)

ae = ry le + e
R /B2 - 1
where Ry and R, are the two roots of equation (3.119). This solution
is valid within the Mach cone having its vertex at the point EO’MO’KO'

The total field due to all the elements of the surface carrying out a
vibration with frequency w will be

iw|t— i\t
qpdog ¢ ¢ (3.126)

“R* BZ—l-e + e

where the integral is extended over the region

E=x - vt - EO <0

02 = (y - qo)z + (z - go)z (3.127)

It is assumed that the radiating elements are disposed along rings from
Eb = - to EO = 0 so that in the cylindrical system of coordinates
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E,0,X dp devend on ¢@. Bearirvy in mind that dogy = pg - 4X - d&
and setting dqgpg = aO(EO)/Zn, for oq -+ 0, yield from equation (3.116)

vields
ub(t-—) m)(t-% (3.128)
c c 3.
uo(Eo)dio

¢ = ———E__— e + e
R B% -1 L

If the length of the wave is much greater than the dimensions of the
radiator (k1 = wl/c <<1), the phase factors may be taken outside the
integral sign and this yields

Ry Ro
D t—_c' UL -—C_

o = — . ‘e ag(&0)dEg (3.129)
B2 - 1 R'/B% - 1

The last integral agrees with the integral considered by Kérmén in his
theory of the resistance of thin bodies at supersonic velocity and has
everywhere a finite value (ref. 34). It may be noted that at a distance
from the Mach cone where R¥>>1, the magnitude R* may be taken outside
the integral sign and there is then obtained a quite simple result

NN
Ao e W\t < (3.130)

$ = e + e
3
R ~/p% - 1
where 0
Ay = ) a(£5)0 (3.131)

The magnitude ao(go) must be determined from the condition that the

derivative - 0®/dp for o = O should be equal to the velocity of a
surface element carrying out vibrations with frequency w. The method
for determining ao(go) was given by Kdrmdn in the preceding mentioned

theory of the resistance of a thin body of revolution (ref. 34).

From the solution of equation (3.130), it follows that surfaces of
constant amplitude will be the hyperboloids R* = constant, that is,

- p“ = constant >0 (3.132)

These hyperboloids are represented in flgure 24. They asymptotically
touch the Mach cone. For subsonic velocity the surfaces of constant
amplitude are ellipsoids (see fig. 14) and for a stationary source they
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are spheres. At a point of space P', lying outside the Mach cone, there
will in general be no sound field and at each point P, lying within this
cone, there will be two fields originating from the two effective posi-
tions of the sound source Q' and Q". With the assumption that the
conditions at which a Doppler effect occurs (see section 17) ere sat-
isfied, the conclusion is drawn that at the point P there will be
received two 'instantaneous' frequencies simultaneocusly

w' = w _li_hll.
- c dt

w" w _ld_RE
= 3% (3.133)

In this case there thus occurs what might more properly be called not a
Doppler displacement of the frequency but a Doppler splitting. The fre-
quencies ' and " are easily computed on the basis of formulas for

R, and R, (ea. (3.20))

1

4
£
-1
. _ . PEF
W' = w—
p” - 1
*
B 53 + 1
" = w 5 (3.134)
B - 1
Tn particular, on the x-axis (p = 0) is obtained
w' = - e
= - 5T
" [4%} -
D = =- 5. o
B+ 1 (5.13%)

From this it is seen that if 1 < B < 2, then |w'| >w and |0"| <w;
but if B > 2, then both frequencies are less than , that is, in this
case lowered tones (as compared with the initial (w)) are heard.

21. Sound Field of a Sound Source for Supersonic Velocity of Motion

In the preceding section a sound source of infinitely small cross
section moving uniformly with supersonic velocity was considered. With
the assumption of a source of this shape, the entire problem was con-
sidered linearly; the state of the medium in this extreme idealized
case was represented as a simple superposition of states, one of which
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was determined by the motion of the body (solution of Kérmén) and the
other by the vibrations of its surface (radiation of sound). For finite
dimensions of the cross section of the body, such simple superposition
does not take place. The translational motion of a bedy of finite sec-
tion produces in the medium considerable changes in the density, Pressure,
and temperature and leads to the formation of density jumps (shock waves )
of finite magnitude.

Because of the difference in the compression of the stream about a
body at various points of the body, the velocity of sound c¢ is not the
same at all points. As a result the Mach angle, too, & = arc sin c/v,
is different for different points of space abhout the body. The surfaces
of discontinuity (of the density jumps) do not, for this reason, have
the shape of a cone and only at a distance from the body do they possess
this simple shape. TIn figures 25 and 26 are shown shock waves arising
during the motion of artillery projectiles of various shapes obtained by
the schlieren method.?2d Thus, the state of the medium near the body
itself is very complicated, and, as has already been mentioned, the
solutiong of the hydrodynamic equations for this case are at present
unknown. ¢4 At a great distance from the body, however, the situation
is simpler. It may be imagined, at least for explaining the geometric
and kinematic aspects of the matter, that the disturbance at some dis-
tance from the body is the result of the compounding of disturbances
propagated with the velocity of sound from each point of the surface of
the body. 1In this the differences in the velocity of sound propagation
near the body must he unavoidably ignored, and therefore the assumed
point of view essentially ignores the finite dimensions of the body so
that a point source of sound would have to be considered. This, however,
leads to an infinitely large magnitude of the shock wave on the Mach cone,
Hence, the theory of a point source may be applied to the problem con-
sidered, restricting it, however, to a consideration of the kinematic
side of the phenomenon. Such problems, for example, as the magnitude of
the shock wave and its change with distance from the body cannot be con-
sidered from such a point of view. With these reservations the preceding
theory (section 20) of the point source may be applied to the problem of
the radiation of a sound source moving in an arbitrary manner. According
to equation (3.48) the field of a harmonic point source is determined by

the potential
iwft - =
c
e
=4, - }- rry (3.136)

k Rk

23On photographing by the schlieren method see reference 38.
24Except for the case of the flow about a cone (see Ackeret, ref. 2).
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where the magnitudes Rk (in the general case their number also may he

greater than two) are determined as the positive roots of the equation

o= fob B o

R\ 2 2
z - Z(£ - 5) -R* =0 (3.137)

and the magnitudes Ri are determined by the equation25

* 1|of
Ry = §l5§ . (3.138)
=k

It is evident that the surfaces

Ry =0 (3.139)

are no other than the surfaces representing the envelopes of the elemen-
tary disturbances propagated from “he sound source. This makes possible
a simple geometrical construction of the surfaces Rﬁ = 0, which are the
surfaces of the potential discontinuity, that is, of the shock-wave sur-
faces (strictly speaking, there is no justification in considering the
state in the immediate reighborhood of these surfaces since on these
surfaces ¢ =w),

For this purpose it is necessary to construct a family of spheres
representing the fronts of the spherical waves issuing from the source
at different instants of time and to draw the envelope of these Spheres.
In figure 27 this construction is shown for a uniformly moving sound
source: (a) for subsonic velocity (in which case there is no envelope)
and (b) for supersonic velocity. 1In this case the envelcpe is a Mach
cone with vertex at the location of the source. From the latter con-
struction there isg clearly seen also the twofold character of the field
for v >c: at the point P, at the instant of time assumed on the
drawing, a disturbance arrives from the two points Q' and Q" (behind
and ahead of P).

Density jumps are also frequently called shock waves or ballistic
waves.

The suitability of these terms will be understood if the density
Jump is considered relative to a stationary observer or, in general, a
sound (pressure) receiver. The density jump, moving together with the

25Here R§ differs from the preceding factor.
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sound source, on passing by the sound receiver leads to a discontinuous
increase of the pressure in the receiver with smoother pressure changes
behind the jump. In figure 28 is shown the pressure in the ballistic B
and nozzle wave N from a 305 millimeter shell according to a recording
by E. Eksklagon. It is thus seen that the pressure in the receiver will
have the character of an impulse or shock.

The problem of finding the envelope of the elementary disturbances
may thus te considered as the problem of finding the front of the bal-
listic or shock wave. A rational analytical solution of this problem will
also be presented. Equation (3.137) in the general case is transcendental
with respect to R so that its direct solution may be very difficult.

Tt is expedient to try to obtain the curves of the intersections of the
wave-front surfaces with some coordinate plane in parametric form with
R as a parameter. Equation (3.137) is quadratic with respect to X, ¥
and z while equation (3.138) is always linear with respect to the same
variables. By taking any section of the required surface with a plane,
for example z = z', y can be expressed by equation (3.138) as a func-
tion of x, z', and R; substituting in equation (3.137) yields a quad-
ratic equation for x. Its roots will be

I

x = Xy (R,z2")

X XZ(R,Z‘) (3.140)

Substituting these values in equation (3.137) gives

It

J Yl(z':R)

1]

y = Yo(z',R) (3.140")

The equations x = Xl’ y = Yl’ and x = XZ’ y = Yz give the curve of

intersection of the shock-wave front by the plane z = z' in parametric
form.

If the source originated at the instant of time t = 0, the values
of the parameter R for the instant t lie in the interval

OgsRge - t

The instant of occurrence is the origin of a special disturbance source
which on being propagated from the point of origin (x(0),.¥(0), 2(0)) in
the form of a spherical wave gives an additional sperical wave front
which, generally speaking, is not a surface of discontinuity. At sub-
sonic velocity of motion of the source, the wave front is entirely

formed by this sphere having its center at the point of origin of the
source (fig. 27(a)). An example of such a wave 1s that occurring at

the i§stant of discharge of a missile from the barrel of a gun {(discharge
gsound) .
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This wave is called a "muzzle wave" in contrast with the ballistic
wave which moves together with the missile. Figure 29 shows a sketch of
the muzzle and ballistic waves for a uniformly accelerated motion of a
disturbance source starting at the point 0O at instant t = 0. From
the diagrams shown for +t =1, 3, 4, and 8, the reader can follow the
development of the ballistic wave which, in this example, overtakes the
muzzle wave. The cross-hatched regions are those in which there are two
effective positions of the sound source and at which, therefore, there
should be heard the superposition of two sound fields, one starting from
the side of the sound source, the other from the opposite side (see
positions Q", Q', Q, and P . in fig. 23).

In figures 30 and 31 are shown the development of a ballistic wave
of an artillery mrissile for a_uniformly retarded (fig. 30) and uniformly
accelerated (fig. 31) motion.2® Figure 32 shows a ballistic (G) and a
muzzle (M) wave for an accelerated curvilinear motion of a disturbance
source.

26Figures 30, 31, and 32 were taken from the paper of L. Prandtl
(ref. 39); figure 28 from the book by E. Eksklagon (ref. 40).
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CHAPTER IV
EXCITATICON OF SOUND BY A FLOW

22 . General Data on Vortical Sound and Vortex Formation

The most common reason for the occurrence of sound in a medium is
the periodic motion of bodies immersed in the medium and having a suf-
ficiently high frequency, for example, the vibration of the prongs of a
tuning fork, the rotational motion of the blades of an airplane or ship
propeller, and so forth. The occurrence of sound is not restricted,
however, to only such cases as these. Sound also arises when there is
a constant flow about stationary solid bodies (or, what amounts to the
same thing, in the motion of bodies with constant velocity) when it
would appear that there were no causes that give rise to periodic
phenomena. An example of this type of sound formation is provided by
the whistle of the tension rods of airplanes, the rigging of ships, the
sound of wires and strings ("aeolian harp"), and the whistling in the flow
about angles, slots, and so on. It is important in this connection to
note that the capacity of the string, for example, for vibrating plays
a secondary part because these sounds occur also in the flow about non-
yielding solid bodies. The initial causes for the occurrence of sound
in these cases are not connected with the vibrations of bodies but with
the phenomena of vortex formations in the flow of a fluid about bodies.
The corresponding sound is therefore called a vortical sound. The two-
fold origin of the sound of an airplane propeller has already been
pointed out. On the one hand, the sound of the propeller is caused by
the periodic motion of the blades (rotational sound); and, on the other
hand, a flow takes place about the propeller blades which leads to vor-
tex formation and also to the occurrence of a particular vortical sound.
The fundamental laws of vortex formation in the flow about bodies are
now considered in more detail. However small the viscosity of the medi-
um about the body may be, the very existence of the frictional forces
produced by it leads to the formation of vortices in the initially po-
tential flow. In order to clarify this aspect of the problem, use will
be made of the equation of motion of a viscous, imcompressible fluid
(the equation of Navier-Stokes). According to equation (1.15), setting
div v= 0 gives

a* -> -»> - ->
p 8% + (v,¥)v]= - vp + pAv divv=20 (4.1)

The flow about a body of characteristic dimension d 1is now considered,
and the velocity of the approaching flow is denoted by v. In place of

X, ¥y, 2, and t, the nondimensional variables x' = x/d, y' = y/d,
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2

z' = z/d, and T' = tv/d are used; and p = p'pv and V= v-+v' are

set up. Equation (4.1) then rcduces to the nondimensional form

\‘+‘
A -> - e
—_— 4 v' 1 v' = - b o+ = A'v! 4.1
S P e 2 S ( )
where Re is the Reynolds number
Re = X(—i- (4.2)

v
(v = 1/p, the kinematic viscosity).

From the hydrodynamic equation thus reduced to the nondimensional
form, it is seen that at large Reynolds numbers Re +the last term in
equation (4.1) may be rejected; and, therefore, in this case the viscous
stresses play a vanishingly small part in comparison with the effects
arising from the inertia of the fluid. The equations of motion of an
ideal fluid are thus obtained. Hence, 1f the approaching flow were
potential, 1t would have to remain so. This conclusion, however, is
true only at a large distance from the body and is not true in the im-
mediate neighborhood of and behind the body. The velocity ¥ on the
surface of the body itself is, because of the adherence of the fluid,
equal to zero. Far from the surface it assumes a value close to that
of the approaching flow (v' = 1). This change of velocity occurs in a
thin layer which is called the boundary layer27. The thickness of this
layer © may be estimated from the fact that in this layer the action
of the viscous stresses is comparable with the effect produced by the
inertia. This means that in this layer the last term in equation (4.1)
is comparable with the remaining terms. These latter terms are of the
order of 1. Since in the boundary layer the velocity over its thickness
5 wvaries from O to 1, the magnitude of the derivative BZV/AHZ, where
n is the normal to the surface of the body, will be of the _order of
V/62; and in nondimensiocnal form the magnitude Av = 32v/5n2 + aEV/HSZ
(s is the tangential length) will be
Ay = (12/82)5%v! /ante + 3v1/3s'e = 12/8% (instead of A'v' = 12/12 = 1
ocutside the boundary layer). From this it is concluded that in the
boundary layer l/Re -12/62 1; that is,

1

°= Re (4.3)

In this thin layer the flow may be considered as corresponding to the
potential flow of an ideal fluid. The existence of a boundary layer,
however thin it may be (large Re, small viscosity), leads to essential
changes in the flow behind the body. In figure 33(a) is represented the

potential flow about a cylinder and in figure 55(b) the flow as it is

1

2 )
7For details on the boundary layer and vorticity, see ref-
erences 41 and 472.
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actually obtained. 'fhe thin boundary layer b'b" becomes unstable at
the point b" and gives rise to vortices shed from the body. The
formation of these vortices may be explained in the following manner:

The stream line a'a"a'" of the potential flow near the surface of the
body is considered. In the region a'a" the stream moves with accelera-
tion, and the pressure at a" drops, as follows directly from the law

of Bernoulli

(8%

p Vv
2 —
o > constant (4‘4) Q
o
because of the narrowing of the stream in the region a". On the other
hand, in the region a"a'' the stream moves against an increasing pres-

sure and iIs consequently retarded. In the ideal case of an absolutely
nonviscous fluid, the particles of the fluid successfully overcome this
rise in pressure, converting the stored-up kinetic energy into potential.
In the presence of friction, however, part of the kinetic energy is

spent in overcoming the forces of friction, and the store of kinetic
energy of the particles is now insufficient for overcoming the increas-
ing pressure. As a result, a reverse flow arises in this region. The
point of occurrence of this flow b" is called the point of separation
of the boundary layer. The picture of the flows that arise here is
represented in more detail in figure 34. This reverse flow forms a
vortex which gradually increases, approximately up to the dimensions

of the body, and which finally breaks away from the body (fig. 33). The
same also takes place at the lower point of separation. The development
of the vortex on one side, however, hinders the development on the other.
Hence, the development of the vortices and their separation occurs al-
ternately, now one side, now on the other side of the body. The separat-
ing vortices form behind the body a double chain of vortices which are
gradually dissipated. This double chain of vortices is termed a Kdrmdn
vortex street. The theory of this concept will be discussed subsequently.
For the present, it is merely pointed out that so far no mathematical
computation of the periodic separation of the vortices has been obtained.
By numerical methods, Boltze (ref. 43) has succeeded in showing mathe-
matically the developuent of a vortex behind the point of separation.
Figures 35 and 36 are photographs of a developing vortex in the flow
about a cylinder and also a KArmdn street formed behind the cylinder at
Re = 250. Although the frequency of the separation of vortices cannot
as yet be computed mathematically, important conclusions can nevertheless
te derived from dimensioral considerations. From the magnitudes charac-
terizing the flow about the body, v, the flow veloeity; 4, the dimen-
sion of the body; and v, the kinematic viscosity, two magnitudes f

and f' can be formed having the dimensions of frequenzy

f= xRe) Y (4.5)

f' = %'(Re) % (4.5")
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where x and %' are nondimensional coefficients depending on the
Reynolds number. The first of the frequencies is a characteristic fre-
quency of the possible periodic motions of the fluid at large values of
the Reynolds number when the effect of the inertia of the fluid predom-
inates; the second, on the contrary, is of significance in the case of
predominant viscosity (small Re). Vortices arise only at large Reynolds
numbers and therefore it may be expected that the frequency of separation
of the vortices should be determined by equation (4.5). It may appear
strange that the frequency of the vortices arising exclusively from the
viscosity of the fluid is determined by equation (4.5) and not by equation
(4.5'). This paradoxical character is, however, only an apparent one.

If it is desired to make use of equation (4.5') for determining the fre-
quency of separation of the vortices, then the magnitude d would have
to denote not the dimension of the body but the thickness of the boundary
layer 5. When & is substituted from equation (4.3) into equation
(4.5"), a result agreeing with equation (4.5) is obtained for f£'. It
may be remarked that'equations (4.5) and (4.5') differ, of course, only
in that x and x' 1in both cases depend little on Re. This phenome-
non is, in fact, observed in actual cases. The periodic separation of
the vortices with frequency (equation (4.5)) gives rise to periodic im-
pulses of small compressions and rarefactions which are propagated at a
distance from the body in the form of a sound wave the frequency of

which agrees with f. This is the wave which is denoted as the vortical
sound. The frequency of the vortical sound was first investigated by
Strouhal for a vibrating string in an air flow (aeoclian harp). From

his tests, Strouhal derived precisely equation (4.5) with x(Re) = 0.185.%3
The value of the Strouhal coefficient depends on the shape of the body,
on the choice of the characteristic dimension d, and not much (in a
certain interval of Reynolds numbers) on the Reynolds number. For a
sphere or cylinder, 4@ denotes the diameter. For a plate having width

1 and thickness b at angle of attack o to the flow,

d=1 sin 2 + © cos .

For such determination of d, from test data (refs. 33 and 45)
For a cylinder: w = 0.20 in the range 103_5 Re‘s 3-104
For a plate: x = 0.165 to 0.180 for 10° < Re < 1.8x10° (at angles of attack
20° to 209). .

The values of x obtained by different authors differ little from
one another. A more detailed investigation of the spectrum of vortical
sound (ref. 45) shows that the equation of Strouhal (equation (4.5)) must
be generalized in order to take into account the upper harmonics of the

?8This derivation of Strouhal was disputed on the basis that the in-
vestigated string is itself capable of vibrations. However, later inves-
tigations (see, for example, refs. 45 and 46) confirmed the equations of
Strouhal for rigid bodies where the vibrations are due exclusively tc the

vortices.
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fundamental frequency

fn=u(Re)<‘—i’n n=1, 2, 3, « + - (4.6)
These harmonlcs, although weakly expressed, are nevertheless observed?®®
(fig. 37) 30, e intensity of the Strouhal sound has been investigated
in considerably less detail. According to the observations of W. Holle
(ref. 46) for the flow about thin cylinders (diameter d, length 1), the
intensity of the vortex sound at the distance r from the radiator is

equal to

. 1ldvd

re

ydb (4.7)

where Holle assumes for n the value 7 (in general, according to his
tests, 68 < n< 8) and o= 5- 10724 in centimeter- gram-second units.
According to the observations of Yudin (ref. 47) on the intensity of the
sound of a blower, n = 6 1is obtained. The same result for n has been
arrived at by Y. M. Sukharevskii from observations of the vortex sound
in a wind tunnel (unpublished computation of the Physics Institute of
the Soviet Academy of Sciences). Nepomnyashchii (ref. 33) from measure-
ments on the vortical sound of a propeller (fig. 38) arrived at the
value n = 4, which corresponds to the theoretical curve 40 log v (fig.
38). 1In fact, at least for large angles of attack (a > 20°), the curve
60 log v corresponding to n = 6 Dbetter corresponds with the results

of his measurements. With regard to the directional characteristic of
the vortex sound, the observations of Yudin (ref. 47) show that it agrees
with the direction characteristic of a dipole the axis of which is per-
pendicular to the direction of flow about the body (e.g€., a propeller
radiates a vortical sound primarily in the direction of its axis sym-
metrical in front and behind). In figure 39 is shown the directional
characteristic for the vortical sound of a propeller. The theoretical
explanation of these laws will be given subsequently. For the present,
the fact is noted that the high degree of dependence of the 1ntens1ty
of the vortex sound on the velocity of the flow (n > 6) has often ap-
peared paradoxical because from the dimensions of the magnitudes it was
assumed that, since the intensity of the sound is proportional to the
square of the pressure and pv /2 is a measure of the pressure, n
should be equal to 4. The error of this reasoning is based on the fact
that the magnitude pv /2 is a measure of the pressure only in an

29For large Reynolds numbers (Re >.105), the expressed vortical fre-
quency evidently does not, in general, exist. The spectrum of the vorti-
cal sound becomes practically continuous and the Strouhal frequency
(equation (4.5)) becomes only a suitable measure for the frequencies rep-
resented in such a spectrum.

3OFigure 37 is taken from the article by Holle (ref. 46).
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incompressible fluid. In the wave region far from the body, this pres-
sure, which decreases in inverse proportion to the square of the dis-
tance, is practically equal to zero; but the important part of the pres-
sure, which decreases in inverse proportion to the first power of the
distance, is entirely connected with the presence of compressibility of
the gas or liguid. In general, from considerations of dimensionality,
it can be concluded that n 1is greater than 4. 1In fact, the density
of the flow of sound energy is equal to
2
7

Y (4.8)

I=
where s 1s the pressure in the wave, p the density of the medium, and
¢ the velocity of sound.

If n 1is measured in units of pv2/2, then

I=x-ﬁ (4.9)
c

where the nondimensional coefficient x may depend on the Reynolds num-
ber; the Mach number v/c; the ratio Z/r, where 1 1is some dimension
of the body; and on the observation angles 6, ¢. Since at large r,
on account of the law of conservation of energy, I must be inversely
proportional to the square of the distance, the following expression
applies for r-» =:

2
1 v 1 , v
X(;, Re, E; 9)(0) = 5 X (Re; E G)QP) (4.10)
r

In place of 12, it is possible, of course, to take the product 1d.
Further, in the absence of compressibility (c-=), X' = O (since the
sound in the absence of compressibility is not radiated). Hence, ¥
must be proportional to a certain positive power of the Mach number
(v/c). In this way there is obtained

4
T=o .23, pv (VY (4.11)
¢4 C

1
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where o depends on Re and on the angles 9, ¥y, and s > 0. The depend-
ence of a on the Reynolds number in the range where the resistance

of the body depends little on Re must be weak so that physically «
depends only on the angles and determines the directional characteristics
of the sound.

Additional considerations permit determining also the least value
of s. The sound source may be assumed as a zero-order source (o does
not depend on 6,9 ), a dipole (7 = o' cos®6, where the direction of the
dipole axis cannot be indicated, and 6 = 0), and so forth. It will
now be shown that the zero-crder source should be excluded. In fact,
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the strength of a zero-order source Q is equal to the volume velocity
Q = J\ v, ds (4.12)

where the integral is taken over the surface S about the source near
the latter itself, and v is the normal component of the velocity of
the fluid to the chosen surface S. 1In this region, the fluid may be
considered as imcompressible since the wave length A of the vortex
sound

5343

1l ec ,
=__d il
A v (412

(for wv< c,x< 1) is always much greater than the cody. But for an in-
compressible fluid the flow through a closed surface is equal to zero.
Hence, Q = 0.51

A diople radiation may thus be expected.sz Since its strength is
is also proportional to the velocity of flow v while the intensity of
the radiation of a dipole source is proportional to the square of iti
strength (i.e., v©) and to the fourth power of the frequency (f4 ~v),
the result that the exponent s 1in equation (4.11) must be equal to 2

is obtained; that is,

o

L1 \4

r c

o]
O

[aV]
Cﬂl

= . 2
I=oa'(Re) * cos“@ (4.11)

The magnitude of the coefficient o' cannotl, of course, be determined
from dimensional considerations. With regard to the direction of the
dipole axis (6 = 0), it should, at least for symmetrical bodies, be sur-
mised, on the basis of the symmetrical succession of the separation of
the vortices from the upper line of separation and from the lower, that
the axis of the dipole is directed along a line perpendicular to the
flow (see section 25).

SlA possible objection to this conclusion is that for the radiation of
sound the compressibility is essential, and that taking it into account
gives Q ¥ O. But taking the compressibility into account means expan-
sion in powers of v&/c?; hence, Q@ would be proportional to v . vé /o2
and the square of Q proportional to v2v4/c4. Since_the intensity of
a zero-order source is further proportiocnal to re .,vz, there would be
obtained I~ v8, i.e., the succeeding term after equation (4.11) in the
expansion in powers of v/c.

32'The same conclusion was arrived at by E. Y. Yudin on the basis of his
measurements of the directional characteristics of the sound of blowers.
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23. Theory of the Karmén Vortex Street - Computation of
the Frequency of Vortex Formation

Kérman and Rubach (refs. 48 and 49) succeeded in constructing a
theory of a double chain of vortices representing an idealization of the
vortex street which actually arises behind bodies moving in a fluid
(see fig. 36).

The Karman-Rubach theory refers to the flow about infinite cylinders
and plates so that only two-dimensional flow is considered in a plane
(x,y) coinciding with the plane of the cross section of the body.

Along an axis parallel to the generator of the cylinder or plate, the
flow is assumed unchanged.

The two-dimensional flow of an ideal incompressible fluid may, as
is known, be described by a comp%ex velocity potential d(z), z = x + iy,
The components of the velocity v along the ox and oy axes, v
and Vy, are computed from this potential by the formula
dad

Ve - vy = -3 (4.12)

33

X

The component along the third axis, however, in view of the assumption
of the two-dimensional character of the flow, is equal to zero. If &
is known, the pressure p can also be found. If & depends on the
time, p 1is computed from the generalized Bernoulli equation

a . 2 2 2

2
= VX + Vy = Vv (413)

B 0%) _ p ad de
P“PO+OR(§E) 2 |3z dz

In this expression, R(3®/3t) denotes the real part of 33/t
The complex potential of one vortex filament at the point =z = 2y will be

351¢ &(z,t) = olx,y,t) + iv(x,y,t) is an analytic function of =z, then
® and ¥ satisfy the equations of Laplace, Agp= 0, and Ay = 0, where
the derivatives of @ and V¥ are subject to the Cauchy-Riemann conditions:
d¢/dx = dY /Oy, and d@/dy = - 3N /ox. If @ 1is taken as the velocity poten-
tial, the equation V¥ = constant will give the streamlines orthogonal to
the surfaces @ = constant. The velocitles vy, vy are —5¢/Bx ~and -aw/ay.
Because of the conditions of Cauchy-Riemann,

-d®/dz = -3p/dx -1d¥/dx = -Jp/Ox + 130 /dy = vy - ivy

which gives equation (4.12). Equation (4.13), if & is expressed in
terms of ¢, reads: p = Py t oaw/at —pv2/2, which agrees with eguation
(1.29). For details on the complex potential, see any textbook on
hydrodynamics.
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Wz - z )
T k
@k(z) = s . ln—-—-—i——-—- (4:.]_4)
where [ is the circulation of the velocity and 1 any length. The
simple computation of the velocities vy and v from this potential
gives the flow about the point =z = z), shown in figure 40. The velocity

v o= lei + v§ changes with the distance r from the axis of the cylin-
drical vortex according to the law

2+ 42

v = F/Zﬂr p = X
similar to the change in the magnetic field about an infinitely long
cylindrical wire. If there are several vortices located at different
points zy(x1,y1), za(x2,y2), - + +, zk(xk,yk), the total potential & is
obtained by summing over-all @&,. The potential ¢' of an infinite series
of vortices having the circulation T' and located at the distance 1
from each other will now be considered. In figure 41 are shown two such
series of vortices. The vortices of the upper series are located at
the points z'p = X'y + iy'y, where x'k = 1k, (k= 0, 1, 42, + - +) and
Y'g = h/Z. Since the potential & is determined only with an accuracy
up to a constant, it is possible in equation (4.14) under the logarithmic
sign to divide by any number so that the sum ¢, may be written in the
form

=1

k:
o ()]} - e { B
[[¢-69)
k=1

and, because of the known representation of the function sin(nz)

sin nz = nz - H( - é) (4.186)

(4.15)
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there is obtained

r' 5t
&' = 21— in — - 4.17
ol 1n sin 2 (z - z8) ( )
In the same way, the following expression is obtained for the second

series of vortices:

1

d" = Eory In sin % (z - 25) (4.18)
The velocity of motion of the vortex chains will now be determined. It
is readily seen that one chain cannot move. In fact, all the vortices
are under the same conditions and for computing the velocity of motion
of the chain it is sufficient to compute the velocity of any of the
vortices. The latter is equal to the velocity resulting from all vor-
tices except the one considered since one vortex filament does not by
itself give a forward velocity. In view of the symmetry, however, it
is evident that the vortices situated on the right and left sides of
the vortex under consideration impart tc it equal and opposite velocities
(this is easily verified by the equation v = —d@'/dz, if the potential
of the vortex under consideration is subtracted from equation (4.17)).
In the presence of two chains, conditions are different. In this case

the total potential ‘is given by

& = d' + 3" = %ﬁi In sin % (z - zé) +
T " . b1¢ _ i
53 1o sin 5 (z zo) (4.19)
and the complex velocity will be
R . r' Tt ,
Ve vy = - g = - g cot 7 (2 - 2p) -
" 7 " -
- t = -z 4.20
7 ot 7 (2 o (4.20)

The vortices of each of the chains will move in the identical
fashion; but since the chain itself does not move, the first chain will
be displaced only under the effect of the second, while the second only
under the effect of the first. The velocity of the first chain is
therefore obtained if the velocity produced by the second chain is com-
puted at the point where some vortex of the first is located (for example,
z = zé). The velocity of the first chain will thus be

Voo iy o= - L
X

b L "
v == cot ¢ (zo zo) (4.21)

and of the second

"o_ oyt o F' _7_( ro_ o P
v 1Vy + == cot 3 (zo zo) (4.22)
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In order that the chains move without change of the relative configura-
tion, it is necessary that

vy - iV}', = Vy - iV'}', (4.23)
that is, I'" = -T'. If it is desired that the direction of the circula-
tion correspond with that shown in figure 41, it is necessary to take

' =1 > 0. Assuming further that the chains move parallel to themselves,
it is required that V& = Vy = O. This condition permits determining

the magnitude of the shift of the vortices of one chain relative to the
vortices of the other. When this shift is denoted by b and the dis-
tance between the chains by h (see fig. 41), the expression

zd - 26 = b + ih 1is obtained. 1In order to determine b, it is necessary
to equate V! to zero, that is, to the imaginary part of equation (4.21)
or equation (X.ZZ). For this it is necessary to make use of the equation

sin 2X . sinh 2Y

cot (X + i = -
ot ( 1Y) cosh 2Y - cos 2X * cosh 2Y - cos 2X

(4.24)

where

cosh & = (eE + e'E)/Z, sinh & = (eE - e'E)/Z, tanh & = sinh &/cosh &

After simple reductions there is obtained from the condition V& = V; = 0
. 2nb
sin —=— = 0 (4.25)

1

that is, b= 0 or b= 1/2. In the first cuse the vortices of the two
series are one above the other; in the second case they are arranged in
chess order as shown in figure 41. Karmdn and Rubach (ref. 48) have
shown that the first arrangement (b = 0) is not stable, while the second
one (b = 1/2) is stable for a wide class of disturbances if

cosh (L?)= a (4.257)

that is,

Il

= 0.28

In this way the ratio h/Z is determined. The obtained picture
of the disposition and motion of the vortices very nearly corresponds
with what is observed in tests on the flow about cylinders and plates
(see fig. 36). 1In particular, experiment confirms the value of the
ratio h/l given here.

When the real part Vg of the complex velocity Vy - iV§ (eq. (4.21))
is computed for b = 1/2, the velocity of motion of the vortex street
is obtained

,_ T
U= V) = o tanh <“Th> - L (4.26)

2+/21

3343
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With the aid of the law of the conservation of momentum applied to the
approaching flow, the body, and the vortex street behind the body, Kdrmén
and Rubach (ref. 48; see also ref. 49, the hydromechanics book by Kochin,
Kibel, and Roze) succeeded in establishing a relation between the coef-
ficient of head resistance of a body Cy; and the ratios Z/d and u/v,
where d 1s the diameter of the cylinder or the width of the plate and

v 1is the velocity of the body. At the same time, they identify the
street arising behind the body with the infinite vortex street Jjust con-
sidered (fig. 42). Very good agreement is obtained with test results

as illustrated in the following table:

h/2 C

. ad W

Bedy u/v 1/ Theory |Experiment | Theory [ Experiment
Cylinder |0.14 | 4.3 0.28 0.28 0.91 0.90
Plate .20 | 5.6 .28 .30 1l.61 1.5€

The determination from this table of the ratio u/v permits also com-
puting the Strouhal coefficient x in equation (4.5) for the frequency
of the vortex sound for the cylinder and the plate. Thus, in a system
of coordinates in which the body is at rest, the vortex street moves
with a velocity, equal in absolute value to (v - u), in a direction
opposite to the motion of the body (fig. 42). When the vortex street
is displaced by 1, the entire picture of the vortex motion repeats
itself. Hence the period of the motion is T = 1/(v - u) and the
(fundamental) frequency will be f = (v - u)/1. After each time inter-
val T, there occurs behind the body a new completely developed vortex
pair. ©BSince it is by these vortices that the vortex sound is generated,
the frequency of the vortex sound should be equal to

v - u u\ 4 v -
f = 7 _(1-;)7—& (4.27)

whence
uy d -
x=<l -;)7 (4.28)

When the valiues u/v and Z/d are substituted from the table given
previously, % = 0.20 (for the cylinder) and x = 0.14 (for the plate)
are obtained, which are in very good agreement with the experimental
data previously given. In this way the theory of Kdrmdn and Rubach
connects the computation of the head resistance of a body with the com-
putation of the formation of vortices arising behind the body.

24. Pseudosound. Conditions of Radiation of Sound by a Flow

In practice it is often necessary to deal with a sound receiver
under conditions where the receiver is immersed in an unsteady flow,
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that is, in a flow the pressure and velocity of which vary not only in
space but in time. Examples of such flows are a wind which constitutes
a turbulent flow possessing a certain mean velocity, the stream of water
in a ship's wake separating behind a ship or from some projecting part
of its body, and so forth. An idealization of such wake is the Kdrmdn
vortex street which moves with the velocity u =I“/2 1/5? so that the
pressure and velocity of the flow at each point vary in time with the
period T = l/u. The changes in pressure and velocity of the pressure
fluctuations in the sound receiver are generally considered as acoustic
interferences. From this point of view the subject will later be con-
sidered in the section on the wind shielding of receivers. For the
present, however, the problem will be presented with special interest
placed upon those sounds which are produced by this flow in the re-
ceiver. If the frequency of these impulses is sufficiently large, the
receiver in such unsteady flow will "hear" a sound (or noise, depending
on the spectral composition of these pulsations). Here those additional
sounds which may arise from the vortex formation in the sound receiver

itself are neglected with the receiver being assumed ideal in this respect.

The effect of the pulsations existing in the flow (on the receiver) may
be inseparable from the effect of a sound of similar spectral composi-
tion. In both cases, the receiver will receive a sonic effect. The
sonic vibrations of the medium, however, and the pulsations of the un-
steady flow are physically widely different. In the first case it is

a question of the small changes of state of the medium associated with
its compressibility. The sonic vibrations are propagated with the veloc-
ity of sound, and this velocity is determined by the elasticity of the
medium (cZ = dp/dp). In the case of pulsations in an unsteady flow, the
compressibility (if the velocities in the flow are much less than the
velocity of sound) plays an entirely secondary role. The motion of the
fluid may be assumed as entirely incompressible and still the pulsations
of pressure and velocity can take place and will be received by the
receiver as a changed pressure. The velocity of propagation of these
pulsations bears no relation to the velocity of sound and is equal to
the mean velocity of the flow. The second difference lies in the fact
that the sound waves are subject to the principle of superposition (be-
cause they may be assumed as linear vibrations of the medium), whereas
the pulsations of velocity and pressure in an unsteady flow represent

a twofold nonlinear phenomenon and are not, of course, subject to the
superposition principle. These physical differences make it necessary
to term the sound received by a receiver immersed in an unsteady flow

a "pseudosound.” It should be borne in mind that an unsteady flow may
be the cause of the occurrence of the usual sound propagated with veloc-
ity c¢. An example of this may be provided by the same vortex sound
vhich arises in the flow about bodies. The conditions under which sound
is produced by a flow will be considered subsequently.

3343
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What has herein been said with regard to the sound of an unsteady
flow may easily be illustrated by the example of the Kdrmdn vortex street,
which may be considered as one of the simplest schemes of nonsteady
flow. For this purpose, the velocity and pressure in a Kérmdn vortex
street will be computed. The pressure receiver will be assumed at rest,
so that the computation will be carried out in a system of coordinates
in which the vortex street moves with the velocity u —I‘/Z 1/5? In
this system of coordinates, the coordinates zy and ZO (of egs. (4.17),
(4.18), and (4.19)), distinguishing the positions of the vortices of the
first and second street, will be functions of the time

h
zh = ut + i3
0 2 (4.29)
. h
no_ _ e
ZO = ut i 5
From equations (4.19) and (4.20) there follows:
o _ Jd Od ad . (4.30)
EE A L

The pressure p, on the basis of the Bernoulli's equation (4.13), is

equal to
2

v
= + - — .
P =Dyt euv -0 (4.31)
Further, from equation (4.20) for I'' = -T" = -T we have
- 3 e — lt 1 r T . 1"
vy - ivy = > cot 3 (z - ZO) - 53 cot 0 (z - zo) (4.32)

When equation (4.24) is used for the determination of the real and
imaginary parts, the following expressions are obtained from equatlons

(4.22) and (4.29):

; 2 h
sinh == + -
r > (v 2)
v = 5y - ~ -
x -2l cosh%f (y + %) + cos-—z.l-j—r (x - ut)

(4.33)
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v, = L sin zx (x - ut) L -
y= 21 1 osh2X (y + 25 + cos 2% (x - ut)
1 2 1
1
COSh'%E (y - %) - cos == T (x - ut) (4.33")

In view of the complexity of the equations, the pressure p will be de-
termined for two extreme cases: (a) on the axis of the street (y = 0), and,
(b) outslde the street, for y > 1> h. In the first case from equations
(4.31), (4.33), and (4.33'), the following expression is obtained when

F/Zl = W/Z u and cosh(nh/l) = 1/5 are taken into account:

4pu2 4 + 2 sin? %F (x - ut)
P=7Py " 2n L- 2n
cos2 & - ut) cos2 T (x - ut)
1 - 1 - =
cosh? %—h cosh? nTh (&.34)

From this equation it is seen that the amplitude of the variable pres-
sure on the axis of the chain is of order of magnitude equal to puz,
and the fundamental frequency of vibration of this pressure is

w = 4mu/l = 2wy (wg = 2nu/l  is the fundamen al frequency of the chain).
For large y, the terms of the order (e' ny/1 and higher being neg-
lected, there is obtained

any
2 1 an
P = Pg - 4pute \/E cos-T-(x -ut) + ¢ - - (4.35)

As is seen from equation (4. 35), the pressure gradually approaches pg,
its amplitude is now equal to 4\/2 oule~2mY/1 | and the fundamental fre-
quency o = w.. The spectrum of the v1brat10ns depends essentially on
the position of the receiver in the street; at the depth of the street
the predominating frequency of the pseudosound is 2wy and outside it,

(Do.

It should be observed that this computation of the pressure refers
to an ideal receiver which does not introduce a distortion in the flow.
A real receiver situated in a flow unavoidably changes it near the body
of the receiver. The pressure received by the receiver will depend not
only on what occurs in the flow itself but also on the character of the
flow about the receiver. For this reason it is necessary to take into
account the precise manner in which the pressure distribution of the
flow changes when the receiver is introduced.

3343
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Since the computation of such distortions is practically nonrealiz-
able, the discussion must be limited to approximations. The equations
of hydrodynamics

{4 (3,0 - op (4.36)
& 2
rermit writing down for the pressure the following equation, which is
valid for the order of magnitude considered:

P = ap --%? 1 ¥ Bpvdv + constant (4.37)

where &v 1is the magnitude of the velocity pulsations in the flow, T

the period of these pulsations, a and B numerical coefficients, and

!l a length determining the gradients (for example, yp «~ p/Z). If the
linear dimension of the pulsations is A, T = A/v. In the flow itself,
evidently, 7 = A, so that both sides in equation (4.37) are of the same
order (provided the flow is not near the steady condition) Near the
body of the receiver, the characteristic length determining the gradients
will be either A or a dimension of the receiver d, if 4 < A. 1In

the first case (d>4 ), there is obtained from equation (4.37)

p= (o + B)ovdy (4.38)
in the second (d << p):
p=(a - g + Blpvdv & Bpvov (4.39)

The coefficients a and B depend on the character of the flow and on
the shape of the receiver body because it is a function of the pressure
near the receiver. An essential conclusion, important for the wind
shielding of the receiver, is that in the case where the dimensions of
the receiver are very much less than the dimensions of the pulsations
the receiver will register the Pressure changes which are produced not
by the local acceleration av/at but by the change in the aerodynamic
pressure pv2/2; that is, the situation would be that which would be
obtained for a slow change of velocity of a constant flow. In this
case, therefore, it is permissible to consider the flow about the re-
celver as a constant flow and, since the pressure distribution on the
receiver is known for such flow

2 |
P = x P—;’— (4.40)

(where x depends on the point of the surface of the receiver), the
changed pressure may be computed by the equation

dp =% pVOV (4.41)

(v 1is the pulsation of velocity). 1In the case 4 > A, such simplified
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"quasistationary" consideration is no longer possible. This case will
be considered in more detall in sections 29 and 30.

The pressure pulsations computed previously, which have been termed
pseudosound, are due to the motion of an incompressible fluid. The com-
pressibility could have been taken into account as a further small cor-
rection of the order of uz/cz. The question may be raised, however,
whether it is possible that behind these small corrections there is
nevertheless hidden a true sound propagated with its characteristic
velocity c¢. The answer to this question must be given in the negative.
If the receiver moves together with the street, that is, with velocity
u, all the magnitudes will become constant. 1In such a system of co-
ordinates, the flow of the vortex street becomes stationary. It is now
shown that if there exists a system of coordinates in which the flow is
stationary, such flow cannot radiate sound. The possibility of reducing
the flow to a stationary form means that all the magnitudes characteri-
zing the flow depend on the time only through the combination x - ut,
so that by taking the new system moving with velocity u (x' = x - ut)

a stationary flow is obtained. Hence, the potential of the velocities
® will likewise be a function of (x - ut) (even if the compressibility
of the fluid is taken into account); that is,

3343

¢ = &(x - ut,y,z) (4.42)

This potential is expanded into a system of cylindrical waves passing off
from the flow

d(x - ut,y,z) = J‘ c(a,ﬁ)ei“(x'ut)HO(ap)BdBda (4.43)

where p = -/x2 + z2 is the distance from the axis of the flow, HO is
a Hankel function, and o and f are parameters of the expansion.
Each of the individual cylindrical waves

. dafx-ut
e

iaﬁ(xyp) = C ) : HO(BD) (4.44)

for large p assumes the asymptotic form:
io x-ut)+ipp
$,(x,0) = C - = - =
Vo A

where the frequency w = au. But for sound waves the phase velocity is
c; hence for these waves

. ellax+Bp)-iwt (4.45)

oo

w 2 yé
ol + 82 = ZE =a 3 (4.46)
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ar
5 o fu”
R o= af (5— - Vl> (4.17)
0

It follows that if u < ¢, then B 1s imaginary and thereforce the vi-
brations éuﬁ damp out exponentially with in:reasing distance from the
flow; in other words, for a flow velocity less than the velocity of

sound, the sonic field in the wave region (1B|p>>'l) is equal to zero.

For supersonic velocity (u > ¢), equation {4.47) is possible also for
real (. Since B/m = tane , where € 1is the angle between the normal
to the wave and the flow velocity, the following expression is obtained

for u > . (eq. 4.47)):

sin a:% (4.48)
that 1s, radiation is possible only under the Mach angle. This result
has already been cbtained by a different method (cf. section 2C). From
this it is seen that a flow movirg with subsonic velocity may radiate
ouly in the case where 1t cannot be made stationary in any system of
coordinates. As a particular case, 1t thern follows that the infinite
Kirmdrn vortex street cannot radiate sound. Its entire field, even in
the case of large frequencies u/Z, will be pseudosonic.

25. Vortex Sound in the Flow about a Long Cylinder or Plate

The occurrence of vortex sound irn the flow abtout a body of simple
shape, such as a cylinder or piate, is riow considered in more detail.
Figure 4Z shows a section of the cylinder under consideraticn ard the
vortex street obtained behind it. A system of coordinates &,n,Z will
be taken in which the tody is at reszst while the air moves with velozity

in the direction of the & axis. If in the stationary system of
:cordinates the veloclity of the vorticzes in the street is u, this
v-iocity in the chosen system of coordinates will be V= v - u (cr.
section 23). The continued existence of the Kdrmdn street is maintained
by the periodical separation of vortex fTilaments from the edges of the
body in the flow. If the period of the street 1s dencted as previously
by 1, the freguency of the vortex separations, as has already teen
explained in section 23 (cf. eq. (4.27)), is equal to

T A" SV (4.49)

1 d

At the distance, for example, 1/2, from the btody ithe formed vortices
turn into a regular Xdrmén street and move o uniformly with veloeity
V= v - u. Hence the state of the flow in this region (&> 1/2) will
depend on the time through the combination £ - Vt; and ir agreement
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with what was said in section 24, the occurrence of vortex sound will

be entirely due to the pericdic renerztion of vortices about the body

(the region to the left of 0'0" in fig. 42). It has already been shown
1 ¢

(section 22) that the wove length of a vortex sound X = =& d is much

greater than the dimensions of the body d. Because of this circumstance,
a region can be drawn about the body in which the motion of the fluid

may be considered as incompressible, the more so as the distance from

it is increased, so that the linear“equation for the potential ¢, con-
sidered in section 6 (see eq. (1.94)) may be considered as valid

2 : 2
1 0% 2B 1 e _ g (4.50)

¢ ot” [ g2 c ot - 9k

where

=g/ 2 £=x - vt, B = v/c

The linearity of the phenomencn is attained in that region where the
second term of the Bernoulli equation p = pd®/ot - p(V¢)272 may be
neglected. If, for the purpose of an approximation, the relations
existing in the Kdrmdn street are considered, it may be assumed on the
btasis of equation (4.35) that the second term p(V@)E/Z is small in
comparison with the first for the distances from the axis of the street
H satisfying the inequality 1/2+/2 >> c-2/1 uhich is the case for
H= 2/2. Actually the vortices do not break away from the body in an
entirely regular manner so that in the spectrum of the vortex sound
there are present, in additicn to the fundamental Strouhal frequency

f, also other frequencies (upper harmonics of f and sound noises).
Consideration is restricted to the fundamental frequency f which
dominates in intensity and corresponds to the formation of the ideal
Karman street. For this reason, only that part of the potential ¢

will be considered which depends harmonically on the time with frequency
f= Xv/d. The corresponding wave number Bﬂf/c will be denocted by

k(k = Zﬂf/c = w/c). A certain control surface S 1is now passed about
the body and the Kdrmdn street so that near the body it goes through the
previously mentioned region where, on the one hand, equation (4.49)
holds and, on the other hand, the motion of the fluid may be considered
as incompressible. Ahead of the body, this surface will be considered

a plane AB continued by the planes AC, BD (see fig. 42) covering the
vortex street. Further, it is evidently sufficient to consider a seg-
ment of a cylinder of length (-L/2< L < L/Z) since the state along the
cylinder does not vary and the' end effects will be neglected. If the
values of the potential and its derivatives on this surface are known,
applying the theorem of Kirchhoff (eg. (1.103)) generalized for equation
(4.49) gives the value of the potential at any point of space. The
integral over the chosen surface breaks up into two essentially different
parts: the integral over the surface 0"BAQ' lying in the region
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withogt waves, and the integral over the planes O'C and 0"D, enclosing
the Karman street and lying in a considerable part of the wave region.
The values of the potential ¢ and its derivatives on the first of the
aforementioned surfaces may be replaced by the values %) representing
the motion of an incompressible fluid. The integral over AB then

drops out since this surface is drawn through the undistributed flow
where &5 = O, and there remain the integrations over AO' and BO'.

On the planes O'C and 0"D, passing to infinity, the potential ¢ may
be represented in the form of the sum of the potentials ¢>b and ¢ .
The first represents the potential of the Kérmén street, and its integral
vanishes in the wave region (the street does not radiate). The second,
¢®', represents the part of the wave field due to the shed vortices. The
integral of this part will give at a point of observation P a certain,
in general nonvanishing, result which will be denoted by w%. If the
bart of the field at the point P due to the integration over AQ!

and BO" is denoted by @p, the following is obtained for the wave field
at P: @p=0¢p +¢p. Since the surfaces of integration AQ' and BO"
Pass near the source, the integration over them should give the princi-
pal part of the field @é- The field @E, however, having the same
Physical cause as ®p, cannot possess symmetry other than ®p (they

are both produced by the same incompressible motion of the fluid near
the cylinder). Hence, the magnitude w% is at least of the same order
as w# and has the same symmetry. Therefore, it is sufficient to
compute @45 for estimating the order of magnitudes and determining the
symmetry of the field (zero source or dipole, etc.). This field is ob-
tained by the application of theorem (1.108) to the surface AQ' and
BO"; that is,

g2 L/2
i c -1kR N -ikR
(pl = el(Dt dE dz ix_f_g e - _ @ O\ c +
P 4 on R* 0 \CH R* h
€1

-L/2 n=H

gz L/Z
g 00 9% oIKE d e—ikR
axn *® ol e 2 Yoy \wF (4.51)
£y -L/2 1

”]‘l:—

where &7 and ¢ are the coordinates of poirnt A and point 0, respec-
tively, so that &, - & 2 1 and H = 1/2. It will now be assumed that
the symmetry in that region where the vortices are generated for the
part of the flow having the Principal frequency is the same as the sym-
metry of the flow in the developed Karman street; that is, it is assumed
that the vortices are developed in alternation, first cn the upper edge
of the body then on the lower, with a phase shift s (this more descrip-
tive requirement is somewhat more rigid than the requirement Just formu-
lated for the component of the motion having the frequency £, but from
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the second the first7necessarily follows). This symmetry is characteri-
zed by the relations™%

QO(E,H;K)U=H = - QO(E,n,K)n=_H (4-52)
aﬁO(EJn);) a':I)O(E;T])Z) (4.53)
o “\ T o

! n=i o n=-H

and leads. to a dipole radiation with a dipole the axis of which is per-
pendicular to the flow (plus higher multiple radiations the intensities
of which will decrease (kZ)2 times with increase in the multiplicity of
the poles). In fact, if in equation (4.51) e'ikR/R*and B(G—lkR/R*)aq
are expanded in a Taylor series in powers of kH<<l and r *% the
following expression is obtained from equations (4.52) and (4.53):

®p = - TULRY 5y ¢ MK X
£, L/2
2 38, @
o ., %o 4.54
d& 1+ + (4.54)
T=H
& ML/

The magnitudes Béb/an and Qb/H are proportional to v, and their
mean values differ from v only by a factor. The wagnitude H is ap-
proximately equal to 1/2, &, - E, %1. Finally, 3R/3n differs from
cos 6 only by quantities of the order of vz/cd, where 6 is the angle
betweer the n-axis (axis of the dipole) and the direction to the point
of otservation P. In place of equation (4.54), the following may
therefore be written:

ike, « v ei(wt_kR)

v . . 2
¢p = i - 1.1¢ cos €

(4.55)

where ~ 1is a numerical coefficient «< 1 (representing essentially
the mean value of the nondimensional velocity 1/v-6¢b/)n on the

SdThe symmetries of the Karman street corresponding to these rela-
tions are easily verified if it is borne in mind that the potential of

one vortex chain extending over the length y' = h/2 is symmetrical
with respect to the substitution of =-(y - h/2) for (y - n/2), and the
other, extending over the length y" = - h/2, is symmetrical with re-

spect to the substitution of -(y + h/2) for (y + h/2), and that the
phases of the potentials along the x-axis for the fundamental frequency
are displaced by a half period.
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n-axis in the plane AO). The energy flow ﬁ in a system of coordinates
in which the medium is at rest and the body moves with velocity v is
now computed. According to equation (1.60), this flow is equal to

> dipw' . pw'k -
F = 225 (o%vo - owor) = 225 gr|o|? (2.56)

where ' 1is the frequency which has been changed because of the Doppler

effect:
1 dR \'%
L - = — = - — .
w Znf ( S dt) onf (l - cos 6) (4.57)

Since the quadrupole radiation was neglected, there is no point in re-
taining higher powers of v/c in substituting ¢ from equation (4.49)
into equation (4.50). Neglecting these terms yields:

N = a“cos®0 9w4V2 1274 (4.58)
ros2ntre 3

and the total encrgy rudiated per second will be

2 4.2
= = S pL Vv o -244
I _f N AR = - % i) (4.59)
Hoting that w = 2nf = 2%3 (1 - u/v), where u is the velocity of the
vortices, gives
2.2, .2 6 4
N - T ugs 6 pg L2 (l _ E) (4.58")
op o v
03 6 4
_an 2 pv 2 u
I=-"a = L ( - V) (4.591)

where, according to the tatle given previously, for the cylinder

(1 - u/v) = 0.8¢ and for the plate = 0.80. The equation obtained
earlier from dimensional considerations (see section 22) is again ob-
tained. The direction of the dipole axis is now fixed; however, the
axis extends perpendicular to the direction of the flow. It is seen
further that the intensity is proportional to the sguare of the length
of the segment of the cylinder (or plate). According to the observations
of W. Holle (ref. 48) for small aspect ratios (L/d,5 15), the intensity
of the scund is preoportional to = power of L, near 2. For L/d > 30,
according to reference 4F, T is proportional not to LZ but to Ld.
The essential point evidently is the fact that for large L/d the co-
herence of the radistion by the individual parts of the ¢cylinder is dis-
rupted. This consideration is very likely if it is remembered that the
leng vortex filaments, as they are considered in the Karmar theory, are
not very stable and break up into certain segments of length AL.SY

Shis assumption sould te verified t, experimentul check.
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The intensity will then be proportional not to L2 but to

-2- 2 _ L A2 2
ALS = N ALe = 1AL

where AL does not now depend on L so that AL = Bd, where [ 1is a
certain numerical coefficient depending in general on d/L. For medium
values of the aspect ratio L/d, g o= L/d; and for large values of L/d,

B = constant.

3343

Thus in place of equations (4.52) and (4.53), the following will
apply for long bodies;

. - 4
7%l - B costo pv® u (4.58")
N = 5 3 Ld{1 - —
2r C v
3 - 6 4
_ an 2 gV u S
I-= — o B, : La (1 - V) (4.59")

If the results of the previously mentioned tests of Holle are used, it
is to De expected that B = L/d for L/d ~ 10 and B = constant for
L/a > 20.

Both from the earlier derived equations and from those now obtained,
it follows that the intensity of the vortex sound is proportional to
the density of the medium p «nd inversely proportional to the cube of
the sound velocity. Hence the intensity of the vortex sound, for other-
wise equ. 1l conditions, is in water 10 times as great as in air. When
the intensity in decibels is expressed by the ratio to the threshold
pressure 2x10-4 bar, there is obtained

N(db) = 80 + 1O log NES (4.60)

According to the results of W. Holle {(ref. 46), the intensity of the
vortex sound N 1is 80 decibels for a cylinder of length L = 22.5 centi-
meters and diameter d = 1.2 centimeters, for v = 35 meters per second at
the distance r = 1 meter (and cos © = 1). From these data and equation
(4.58"), the value ndqu/Z = 105 is obtained, whence for B 2 10
there is obtained na = 1.4:10-2. This value is in good agreement with
the initial assumptions of the theory. 1In fact, a essentially reduces
to the value of the ratio v /V at the distance y = 1/2 from the street.

According to equation (4.33'){ at this distance

vy/v 2 ue /v = 0.2¢7" = 1072,
26. Remarks on the Vortex Noise of Propellers

Tests show that the vortex noise of propellers has a spectrum in
which one of the frequencies stands out relatively strongly, so that the
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spectrum consists of a sharp peak on a diffused background (fig. 43).
This characteristic of the vortex noise becomes understandable if account
is taken of the fact that its intensity increases very rapidly with the
velocity (as v6). This noise may, in fact, be considered as generated
by the vortices shed from the different parts of the blade. A concep-
tion of the spectrum of this sound can be obtained if the individual
parts of the blade are assumed to give rise to independent vortex for-
mations and if to each part of the blade is applied the equation for the
intensity of the vortex sound derived previously from considerations of
dimensionality and considered for the special case of a cylinder or
plate. The length of a segment of the blade over which the profile and
its angle of attack changes little will be denoted by AR. The width of
the profile at the same segment will be denoted by 1(R). The intensity
of the vortex sound generated by this segment will then be
2.2 2
AT = v1(R)ARVO(R) y=1i5%os——9 (4.61)
2r-

where v = ZnRN 1is the peripheral velocity of the segment, R is the
distance from the axis of the propeller, sand N is the number of rota-
tions of the propeller. The frequency which is predominantly radiated
by this segment will be

(R) R
f(R) = x YR . opa - B 4.62

(K) R e ( )
where d(R) is the width of a plate equivalent to the blade element.
The following expressicn may be set up:

d(R) = 1 sin 7 + b cos o (4.63)

where o 1s the angle of attack of the segment, 1 the width, and b
the thickness (1, b, and « are functions of R).

From equations (4.62) and (4.63), the following terms can be found;
R = R(f), and also d(f), 1(f), AR(T) = (dR/Af)Af. Substituting in
equation (4.61) yields

dR

IF (4.64)

Al = y1(£)ab(r)rbar
which gives the spectral distribution of the vortex sound radiated by
the propeller. It has a sharp maximum about a certain frequency f.
This is evident from the fact that f and R are approximately linearly
connected (R ~ f), and for f-» = , R > Rps where Rp 1is the radius of
the propeller (in fact, d(Ry) = O; then from equation (4.62) there fol-
lows f = ). Hence in equation (4.58), the factor f£® rapidly increases
while the factors dR/dAf and d8(f) approach 0 as f *®,

Equation (4.64) can, of course, give only a very rough idea of the
spectral composition and the intensity of the vortex sowmnd of a propel-
ler, since the assumptions made in its derivation do not pretend to
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great accuracy. The angle 6 entering the coefficient 7y, as is known
from section 25, is the angle between the ray at the point of observa-
tion and the dipole axis which is perpendicular to the flow. Since the
blades move perpendicularly to the propeller axis, this is the angle
between a ray at the pcint of observation and the propeller axis. The
maximum intensity of the vortex noise will therefore be radiated ahead
of and behind the propeller axis, as, in fact, observed (see ref. 47).
It should be recalled that the s>und of the propeller rotation (ef.
section 18) is, on the contrary, radiated in directions almost perpen-
dicular to the propeller axis. The frequencies of these two sounds,
as has already been remarked, are likewise different. The frequency of
the rotation sound is fg = Nn (n, the number of blades, cf. section
18), while the frequency of the vortex sound is equal to

£ o oy - 2HR (4.65)

d

where R and 4 are the values of R and d for the most intense
frequency. The ratio of the frequencies of these two sounds will be

—_— = 27 -

-
0 n

ANt |

(4.66)

Since n =2 or 3, x 2 0.2, and R 1is generally several times (about
6 to 10) times as large as d, the frequency of the vortex sound exceeds
the frequency of the sound of rotation by several times.

27. Excitation of Resonators by a Flow

In the preceding sections, the origin of the sound in the flow of
air about bodies was considered. This theory cannot, however, be applied
directly to bodies of any shape. It was tuacitly assumed that the body
has & relatively simple geometrical shape capable of being characterized
with sufficient completeness by a single length d, which also determines
the frequency of the radiated sound by the equation of Strouhal f = Xv/d.
For bodies of more complicated shape, the case is otherwise. It is
clear, for example, that if on a body of simple shape with characteristiec
dimension dy there is a projection with characteristic dimension do,
there will be two vortex frequencies for the same velocity of the flow v:

v
foo= U, + —
1 1 a;
(4.67)
f = N . L

2 2 4,
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The presence of any projections, sharp angles, discontinuities in the
profile, roughnesses, and so forth, may essentially change the sound
spectrum. Entirely different characteristic phenomena arise in those
cases where the body possesses not convexities but concavities. The
latter are acoustic resonators possessing proper vibrations with fre-
quencies Y and damping coefficients hgy. The proper frequencies of

s
such a resonator are determined by its dimensions 4 and the velocity

of sound c:
c c
v, =3 Vg (H . hs> (4.68)

where Ws is a certain numerical coefficient. The value of the damp-
ing coefficient depends further on the viscosity of the air u and on
its thermal conductivity x (if the thermal conductivity of the walls

of the resconator is much greater than the thermal conductivity of the
air, then hgy does not depend on it). It may be said that, in the
presence of cavities in the body which are capable of resonance, the fre-
quencies that can be associated with the body depend not only on the
ratios v/d but also on the ratios c/d. The simplest examples of such
resonators will be, for example, pipes open at one or both ends, Helmholtz
resonators (in the form of bottles), and so on. All resonators of such
kind may easily be made to emit a sound in an air flow by blowing at
their mouths. This phenomenon may be on the most diverse scales, from
the whistling in the wind of a small cavity of a receiver microphone
(wind static) to the catastrophic excitation of the vibrations of an

open wind tunnel that may lead to the destruction of the tunnel and
buildingSSG, The same phenomenon in the last war was applied by the
enemy in the soc-called whistling bombs designed for psychological effect.
It finds application to other more suitable purposes in military matters.
Also, 211 musical wind instruments and sirens are essentially based on
the phenomenon of the excitation of vibrations by an air stream.

In all these cases there may be distinguished two mutually inter-
acting systems: the vortices arising in the flow about the body on the
one hand and the resonator on the other. The vortices do not, of course,
represent a rigid system and, strictly speaking, their action on the
resonator cannot be considered as the action of an external given force.
On the contrary, it is to be expected that the vibrations of the rescna-
tor have themselves an effect on the formation of the vortices and on
their frequency and intensity so that the entire system must be considered
as self-vibrating nonlinear system, the state of which is described by

6pn open wind tunnel represents a resonator pipe with open ends and
curved like a torus. The flow which excites the vibrations is the flow
within the tunnel itself, and vortex formation is obtained at the exit
of this stream in the working section. Interesting investigations of
the vibrations arising in such system have been conducted by S. P.
Strelkov (ref. 50).
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the velocity v and the damping coefficient of the resonator hg. From
considerations of dimensionality, the following formula may be written
for the amplitude of the pressure fluctuations in the resonator:

2 vu, hg
p=p~— ¢ —2, — (4.69)

2 a vy

In the region of maximum excitation of the resonator (autoresonance),
this amplitude should be inversely proportional to the damping coeffi-

cient h
1]
_ V'E US VUS
Ps =P g % ( 1 (4.70)
where the stroke on the velocity v 1indicates that the equation holds
only for a certain value v = v'. The nonlinear phenomena occurring in

the systems under consideration cannot, at the present stage of the
theory of vortex formation, be considered in more detail mathematically.
The computation of the vortices that arise in the flow about a body even
in the absence of a resonator is as yet an unsolved problem. It is all
the more reason to expect little success in the computation in the pres-
ence of a resonator when, for example, there may occur an interaction

of the frequencies of vibration of the vortices with the frequencies of
the resonator, phenomena which are characteristic for autovibrating
systems. It is therefore of interest to know to what extent it may be
useful, for practical purposes, to employ a more primitive point of
view in which the nonlinear character of the relations between the vor-
tices and the resonator is ignored and the pressure pulsations produced
by the vortex formation are considered as a given external force applied
to the resonator. It is evident that such a simplified approach to the
phenomenon is possible only in the case where the system of vortices has
a considerable degreé of independence so that the amplitudes and fre-
quencies of this system are essentially determined by the velocity and
geometry of the flow and not by the vibrations of the resonator. If
such is the case, the nonlinear phenomena, such as the interaction of
the frequencies, could be considered relatively unimportant, and it
would not be absclutely required to account for such phenomena in ap-
proximations intended for obtaining only the most essential information.
It is possible also to assume a priori that the case is otherwise, namely,
that in the presence of a resonator the vibrations of the vortices as a
whole are determined by the vibrations of the resonator interacting with
the flow. The problem proposed could be solved only by an experimental
method. Experiments on the excitation of resonators by air streams are
reported in reference 51. As a resonator there was taken a four-sided
tube closed at one end and placed in an air flow the velocity of which
could be brought up to 35 meters per second. At the bottom of the tube
was a measuring microphone, with the aid of which the pressures of the
vibrations arising in the pipe were transmitted. This pipe was readily
excited at definite velocities of the stream, emitting a sound with its
natural vibration frequencies vg = c(2s + 1)42, s =1, 2, 3, * * *.
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A picture of the flows about such a Pipe and within it is shown in figure
44. The circulation arising in the pipe, characteristic in general for
all concavities in a stream, is very slow and has no essential value for
the phenomena of interest here. On the other hand, of extreme importance
is the region about the mouth of the resonator where, as in the case of
the flow about solid bodies, an unstable dividing boundary (ABC) is
formed between the stream and the stagnant region. It is in this bound-
ary that the vortex formation is obtained, which must, therefore, essen-
tially depend on the geometry of the mouth of the resonator. In order

to explain the character of the vortex formation aside from the depend~
ence on the presence of the resonator, the resonator was damped by a
damper of cotton and netting placed on the bottom of the resonator. The
flow around the mouth was thereby practically unchanged and the resonator
was, in effect, eliminated. The damping was chosen such that the fre-
Quency characteristic of the measuring microphone located at the bottom
of the resonator coincided with the frequency characteristic of the
microphone itself. In this way it was possible to determine the spec-
tral composition of the pressure pulsations due to the vortex formaticn
at the mouth of the radiator. It was found that the frequencies of the
vortices were in accordance with equation (4.67):

f =% 2 n n=1,2, 3, « « +« x = 0.65 (4.71)

v

n a
where d 1is the length of the side of the mouth of the resonator. The
value of the coefficient x is given for the angle of attack o of 70°
(fig. 44) in the neighborhood of which there was observed the excitation
of the resonators. In this way the existence of two overtones of the
Strouhal frequency was confirmed, which led in section 22 to the general-
ized formula (4.6). The amplitude of the pressure of these overtones,
as was to be expected, is proportional to the square of the flow velocity:

ve

P = Bnp? (4.72)
where a = 70°, By = 0.055, B2 = 0.020, and Bz = 0.010. Figure 45 shows
the frequency of the vortices as a function of the flow velocity .
The same figure shows also the natural frequencies of the resonator v
indicated by the horizontal lines. At the points of intersection of
these lines, that is, for

vy =T (4.73)
indicated on the figure by small circles, which are the points of reso-
nance, the excitation of the resonator was to be expected. This wacgs
actually confirmed. On removal of the damper, the resonator was excited
at the stream velocities v', determined from equations (4.71) and (4.73):
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1 ST
V= — (4.74)

The existence of the vortices permits, at least as an approximation,
computing the pressures arising in the resonator as a result of the
action of the vortices. If q(w) denotes the coefficient of amplifica-
tion of the resonator for the frequency (w = 2xf), the amplitude of the
pressure p on the bottom of the resonator will be as follows, if a
pressure of frequency w and with amplitude P is applied at its

mouth:
p = a(w)P (4.75)

This equation assumes that the vibrations are linear; q(w) depends on
the shape of the resonator, but for all resonators in the region of
resonance frequencies (w = 2mu), q(w) 1is inversely proportional to the
damping coefficient h_. Comparison of the results of computation by
this equation with the measured values of p shows (ref. 51) agreement
in the order of magnitude. The observed difference attains 6 decibels
(2 times), which already serves as an indication of the fact that the
divergences are due not to the errors of measurement but to the fact
that the assumption of a rigid vortex system fails to correspond; such
a system is actually subject to the inverse effect of the vibrations of
the resonator (autovibrating character of the phenomena). In figure 46
are given the excitation curves of a resonator (I as a function of v).

The maximums of the excitation correpsond to the resonances of the
vortex frequencies and the natural frequencies of the resonator. They
are indicated by the same letters as the circles in figure 45. The last
maximum ¢ corresponds simultaneously to two resonances (fig. 46), when
the second overtone of the vortices ccincides with the first overtone
of the rescnator and simultaneously the fundamental tone of the rescnator
coincides with the fundamental tone of the vortices®?. The vibrations
that arise in this case are biharmonic.

The height of the maximums is inversely proportional to the damp-
ing coefficient, as was confirmed by a change in the damping of the res-
onator. In the same manner, the dependence of the frequency of the vor-
tices on the dimensions of the mouth of the resonator (eq. (4.71)) is
also confirmed. The computation of the amplification coefficient of
the resonator for the different resonators is found in many texts on
acoustics.

57This circumstance is incidental and is caused by a characteristic
feature of the given resonator.
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For the simple harmonic Helmholtz oscillator (fig. 47) the equation
of vibrations reads:

> ; 2 sP

E + 2hE + u)OE = (4.76)
where £ 1is the velocity of motion of the air mass in the resonator
throat, h the coefficient of damping, wp the natural frequency, s the
throat area, P the variable pressure applied from without, and M the
mass of air moving in the throat of the resonator. Also, M = pls, where
L 1is the effective length of the throat, p the density of the air;
L=1+ aa, where 1 1is the length of the throat, a its radius, o a
numerical coefficient equal, for the case of a circular opening, to n/Z.
The natural frequency Wy is equal to:

Wy = € "/L—sv (4.77)

where V is the volume of the resonator. When equation (4.77) is
solved for the external force, having frequency w, the amplitude of
the displacement EO is obtained:

_ SP 1 (4.78)
EO M 2 242 2 2
-\/(a) - wO) + 4h"wg
(if w >>h). The changes in pressure within the resonator with adia-
batic change of the volume of air enclosed in it will have the amplitude:
IR\ R o
p=pc” Y pet — (4.79)

Substituting this in equation (4.72) gives
2
Lg (4.80)

p=P
2
Vo? - wg)2 + 4n%wf
h
whence I
0 4.81
q(w) = ( )
2 2 22
\/?w - wb) + 4h wg
At resonance (w = wo), alw) = wO/Zh, so that the amplitude of vibration
of the resonator excited by the flow of air will be
2 wp
= yo X 4.82

The numerical coefficient 8 depends on the shape of the throat
and on the angle of approach of the flow (as was mentioned for the rec-

tangular throat, for a = 70°, B = 0.055).
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A second simple case of a resonator is a pipe closed at one end,
such as that considered in the previously described tests (fig. 44).

In this case it is a question of the vibrations of a distributed
system. The displacement of the air along the axis of the pipe, which
will be chosen in the direction of the x-axis, is here subject to the
wave equation:

2 2

d .
_‘52+C26%_C25_§=0 (4.83)
ot ‘ ox

where & 1is the friction coefficient that takes into account the losses
in the heat conduction and viscosity of the air38‘

The pressure p at each point is equal to:

p= - 0025—5 (4.84)
ax

Equation (17) must be solved for the boundary conditions:

&) =0

x=0

2 az)
-pc“ | = =P (4.85)
<8x x=1

expressing that fact that at the closed end of the pipe (x = 0) the air
is at rest while at the open end the pressure is equal to the external
applied pressure P. If the fact that the air near the mouth of the
pipe takes part in the vibrations is taken into account, the last bound-
ary condition must be satisfied by the pressure P', representing the
reaction of the associated air mass. If the impedance of this mass,
generally termed mouth impedance, is Z = X + 1Y, then ' = pc(X + iY).
In place of equation (4.85), the following expressions hold:

(£), = O

-pct <5£) LT oc(X + iY)(E) _ + P (4.86)

dx Xx=1

The active part of this impedance X 1is due to the losses in radiation,

while the reactive part Y is determined by the mass of the air vibrating

along with the resonator. These magnitudes, for an orifice of area s,
are equal to:

58A simple method of computing this coefficient is given in
reference 4.
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(1)25

4mce

- 0.7 \/5

and details on them may be found, for example, in the work of Y. L. Gutin
(ref. 52). Assuming that the external pressure depends harmonically

on the time, with frequency w, the displacement & 1is taken proportion-
al to 1wt’ From equation (4 83) a.solution satisfying the boundary
condition &= 0 for x = 0 1is readily found:

X =
(4.87)

2
£= &, sin Kx K = 9@ - iwd (4.88)
C

For small damping (5 <<w) the following may be assumed:

K=k - ix k = n= %? (4.82)

ole

By the substitution of equation (4.88) in the second boundary condition,

equation (4.86), the amplitude £, is determined:

£o = : (
0 impe (X + 1Y) sin KT + pe? K cos Kl

When the real and imaginary parts are separated and the fact that
x1 << 1, X, Y<< 1 1is taken into account, the following is obtained,

for the amplitude &4:

4.20)

(4.91)
EO =
wpe w//[cos kl - Y sin kl1] [Egn kl ::]
where
h=<X+ 3c” (4.92)
1 2 )

is the damping coefficient of the radiator.

On the basis of egquation (4.84) the amplitude of the pressure at the
bottom of the resonator at x = 0 1is equal to Eopw. The required am-
plification factor of the resonator is therefore equal to:

1
2
w/[Ecos kl - Y sin k1]2 + [E}n k1l %g]

(4.93)

q(w) =
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The points cos k1 - Y sin k1 = 0 determine the position of the reso-
nance frequencies. With the fact that Y 1is small tsken into account,
this condition may be represented in the form:

s @b
C

co =0

(4.94)
nc
Wy = oF (2s +1), s=0,1, 2, -
where L is the effective length of the resonator:

L=1+0.7 j/fér (4.95)

At the points of resonance, the value of the amplification factor is
equal to

3343

1
a(w) = o= (4.96)
(since sin(k,1) ® 1). Hence the amplitude of the vibrations of the
bressure in the resonator under the action of an external stream is:
2
v
p=po L L (4.97)
2 hge
This equation may also serve for estimating the value of p. Considera-
tion will now be given to the computation of the intensity of the sound
radiated by a resonator excited by an air stream. Evidently, it is suf-
ficient to compute the energy radiated through the mouth of the resonator
and, in what follows, to make use of the law of the inverse square of
the distance. The mean flow of energy through the mouth of the resonator,
according to the general equation (3.3), is equal to:

— J— 1 .

N = DpES = 3 phg, - 8 (4.98)
where p)l 1is the amplitude of the velocity of the air vibrations near
the mouth and Eb is the amplitude of that part of the air bressure near

the mouth which is produced by the radiation. This part is equal to
OCXEO' Hence, the mean flow of energy through the entire mouth is

1 ¥
N=3pc - XEOS (4.99)

and the energy flow through 1 square centimeter at the distance r from
the resonator will be

1 - 2
N, = —— peX (4.100)
0 8nre 0 -
In order to cbtain the final result, the value of £, at the point

of resonance must be taken. According to equation (4.91), for the tube
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éO = g% —97 and for the Helmholtz resonator, according to equation (4.79),
S
. P
EO = SE Eﬁi. Hence, for the tube the following expression applies:
2
2
N = X8 cé B.2<oﬁ> (4.101)
0 Bnrzpc hzl2 2
and for the Helmholtz rescnator: 5 2
X"s"  cZ Vo
wy = = = e (Q S (4.101")
8nr~pc 2h°L e
th

where Vg is the velocity corresponding to the excitation of the s
vibration of the tube and Vq is the velocity at which the Helmholtz
resonator is excited.
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CHAPTER V

ACTION OF A SOUND RECEIVER IN A STREAM

28. Physical Phenomena in the Flow about a Sound Receiver

A sound receiver placed in a stream of air or water will register
periodic changes of pressure brought about not only by the arriving
sound signal but also by the flow arcund the body.

Such periodic pulsations are termed "pseudosound." It is clear
that the pseudosound will act as an obstacle for the successful re-
ception of the useful signal, an obstacle which may possibly be very
significant. It is well known in practice how strongly the audibility
of the sound of a distant airplane may be lowered in a wind. Such
lovwering of the audibility occurs also in the work of hydrophones of a
ship (in this case the noises of the ship are intermixed).

For this reason the case of the action of a sound receiver in a
stream is of a practical interest. The phenomena due to the unsteady
flow must be distinguished from the phenomena that take place in a
steady flow. The phenomena that take place in a steady flow are con-
sidered first. A steady flow does not contain pressure pulsations
periodic in time, but such pulsations arise on the receiver body because
of the vortex formation.

The vortex formation is, in the case considered, the only cause of
the pseudosound. The predominant frequency of this sound is determined
by the formula of Strouhal which was used previously:

f=x (5.1)

Q<

If the Reynolds number is large gRe = %g > 105), the spectrum of

the vortex pseudosound may be very diffuse near the frequency equation
(5.1). The pressure of the pseudosound will be proportional to the
dynamic pressure:

2
P = PBp V? (5.2)
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Wwhere B 1is a numerical coefficient that depends on the shape of the
body.

If the flow is unsteady, further pressure pulsations characteristic
of the flow are superposed on the pressure pulsations determined by the
vortex formation. This pseudosound of the flow was pPartly considered
previously (section 24). 1In this case it is necessary to distinguish
between the pressure pulsations brought about by the local change in
the velocity of the flow and the pressure pulsations associated with
the momentum transfer of the flow. This question was previously dis-
cussed in part (section 24), but now it will be considered in greater
detail. A simple example may serve to illustrate the pseudosound of
the flow. The receiver is assumed to have the shape of a sphere and
to be placed in a stream in the direction of the 0Z-axis (fig. 48) .

The flow velocity V is assumed to pulsate Periodically with the
frequency w = 21/T: then

V = Vo T8V . cos wt (5.3)

The vortex formation is disregarded, and the flow is assumed to be
potential. The equation for the potential ¥ is:

> 23, &
O% + & + a i
0x2  3y2 g2

(5.4)

The radial component of the velocity V. = - 0¢/3r on the surface of
the sphere (r = a) must be equal to zero, and the velocity at a large
distance from the body must become V= -0%/0z (eq. (5.3)). a
solution of equation (5.4) satisfying these boundary conditions, as
easily verified by substitution, will be

il

3
$ =V cos 6 (r + _E_) rcos 8 =g (5.5)
are

By the formula of Bernoulli, the pressure at such a point will be

D=2 _ 1 (gp)° (5.6)
pJt 2

[l

and on the surface of the body (r = a), on the basis of equation (5.5),

- 3 2
P = constant + ZPcos@ .a g% - g sin . o Y2 (5.6)

From this formula, it is seen that the pressure is made up of two com-
bonent parts, namely, the term P' which is also Present in the steady
flow:

\

P' = constant - z sin . P = (5.7)
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and the term p", determined by the acceleration of the flow:

p" = Spcos b .a. ov (5.8)
2 ot

From a comparison of equations (5.7) and (5.8), it follows from equation
(5.3) that the variable part of the pressure p' determined by the
dynamic pressure considerably exceeds the part p" determined by the
local acceleration if

a §K << V BV
ot

or (5.9)
2na,

that is, p' << p" 1if the dimensions of the receiver a are sufficiently
small. The velocity pulsation considered is uniform over the entire
space. If the pulsations have the dimension A, then Tz A/V, and
equation (5.9) reduces to

a << A (5.10)

This condition was obtained in section 24 by a different method; it is
apparent that, for small dimensions of the receiver in comparison with
the dimensions of the pulsations, the changes in dynamic pressure have
a much greater significance than the acceleration of the flow.

The spectral distribution of the pseudosound of an unsteady flow
is entirely determined by the nature of the flow. If the nonsteady
condition of the flow is produced by the flow about certain bodies
placed near the receiver so that the receiver is in the vortex street
of these bodies, the spectral composition of the pulsations is deter-
mined by the Strouhal frequencies and their overtones, as has already
been shown in the example of the ideal KAirméan street (section 24).

At a large distance from the bodies, the Karmén street undergoes
a breakdown and the flow will be turbulent. A natural wind likewise
represents a turbulent flow. The fundamental features of this turbu-
lence were described in section 10.

As previously stated in section 24, the computation of the magnitudes
and spectral distribution of the pressure pulsations on the surface of
a recelver in any unsteady flow is at the présent time an insurmountable
problem. It was pointed out that a partial analysis of this problem
is possible on the basis of dimensional considerations in the applica-
tion to the fundamental equation of hydrodynamics. In the general case,

the pressure on the surface of the receiver is assumed to be determined
by

3343



2vee

NACA TM 1399 149

- 2
OV pv
P =apa St B ST (5.11)

This equation is a generalization of equation (5.6), which holds for a
particular case, The fact that the pressure at any point and at any
instant of time depends on the dynamic pressure (va/Z) and on the
local change in velocity ov/ot 1s expressed in eguation (5.11). Since
the velocity varies not only in magnitude but also in direction, the
angle of attack will vary with the velocity fluctuations of the flow.
Because of this variance, the numerical coefficients o and £, which
depend only on the shape of the body and the angle of attack, will also
be functions of the time. If the magnitude of the pulsations 8&v 1is
much less than the mean velocity of the flow v, the changes in «

and £ will be slight. Further, the derivative ov/dt is of order of
magnitude equal to SV/T = VSV/A; and therefore, with equation (5.10)
satisfied, ov/ot wmay be rejected. For the variable part of the pres-
sure p,

SB) va
L B olad s} — 5.12

where ¥ 1is the angle of attack and the subscript O denotes the value
of B and OB/d¥ for the angle of attack of the main flow (v = o).

(The variation of the angle of attack 8¥ 1is equal to Svt/v,
where ©®vy 1is the fluctuation of the velocity in the direction per-
pendicular to v).

For isotropic pulsations, dvy = &v and therefore

. 1 (o8 -
p' = (EO + > (55)0) pVdV = g pvdV (5.13)

The spectrum of the pressure p' therefore coincides with the spectrum
of the velocity pulsations ov, and its magnitude may be computed from
the stationary flow about the body under consideration. This evidently
is the only rational conclusion which can be drawn from equation (5.11).
For the mean square of the Pressure pulsations from equation (5.13)

—

p'2 = g2p2ylyva (5.14)

and the spectral distribution is obtained from

BVE = L//w[ﬁv(w)]zdm (5.15)
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where ©®v(w) is the amplitude of the pulsation belonging to the frequency
w. Hence, for the mean-square pressure of all pulsations, the frequencies
of which lie between w7 and wp,

2
p.Z(ml,wZ) = eZOZVZKZ(SV(w)J qw (5.16)
1

The amplification factor of the receiver is assumed equal to q(w) in
order that the signal received by the receiver is measured by the magni-
tude P:

p =f a(w)p' (w)el®ay (5.17)
Squaring and averaging equation (5.17) with respect to time yield
p2 =f a®() . p'%(w)aw (5.18)

where, on the basis of equation (5.14),
p'é(w)dw = Ezpzvztﬁv(w)J 2 (5.19)

If the receiver has sharp resonances to that, for example, there is a
natural vibration with the frequency w = @ and damping coefficient
of h, then for w = wg the amplification factor becomes particularly
large and, as is known from section 24, is equal to q(wo) = q‘wo/h,
where the coefficient q' 1is of order of magnitude equal to 1 (section
27). Integrating equation (5.18) with respect to wy between the
limits of the resonance line (wp - h/2, wy + h/2), yields

wyt+h/2 o
2 - 2 12 = 412 % 12
p“(ap) —\.4.‘-11/2 q%(wp)p'4(wp)dw = g =P (wg)  (5.20)

For small values of h, this part of the magnitude p2 may predominate
over the remaining parts to such an extent that practically the entire
effect of the pseudosound on the receiver may be reduced to the emitting
of a sound from the receiver at the resonance frequency uy. Hence,
receivers with sharp resonances will be particularly subject to acoustic
disturbances.

This case is characterized by the possibility of reducing the action
of the nonsteady flow to that of a steady flow. The fundamental result
is the fact that the spectrum of the Pressure pulsations reduces to the
spectrum of the velocity pulsations. If the approaching flow is a well
developed turbulent flow, the approaching flow may be applied to the
turbulence theory described in section 10.
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This theory was developed for homogenecus isotropic turbulence.
The 2/3 law, which determines the spectral distribution of the veloc-
ity of the turbulent motion over the pulsations of different scales,
was obtained. Now, however, the distribution over the frequencies is
of interest. The problem of associating the distribution of the fre-
quencies with the distribution over the spatial scales has been solved
only for linear vibrations of the medium (for example, for sonic noise).

In the case of the turbulent motion of a gas or liquid, this
relation has not as yet been established.

For the determination of the velocity spectrum over the frequencies,
the same considerations which were applied to the diffusion of sound in
a turbulent flow (section 12) may be employed. As was explained, the
important fact is that the frequency of the turbulent pulsations is in
itself very small. The high frequencies, which are of significance in
acoustics, are obtained in virtue of the fact that the large-scale
velocity pulsations transfer the small-scale pulsations. If the large-
scale velocity pulsations which change slowly are included in the mean
velocity v {in this way Vv will have the sense of a mean velocity
over a time during which this velocity does not undergo considerable
changes and which is much greater than the period of those frequencies
which are received by the receiver), then v will be precisely the
velocity with which the small velocity pulsations are displaced. For
these small pulsations the 2/3 law holds, in accordance with which the
mean value of the square of the velocity u for the pulsations which
have a scale less than A = 2n/q will be (see section 10, egs. (2.63)
and (2.64)):

2/3
1 1. -2/3 2 5—(DO)
E = — U = = = - 2 - 5.21
(@) =3 (a) = Lra r=232(2 (5.21)
The magnitude u(q) is precisely &v(q). Thus,
2 -2/3
[8v(2)]% = 7 -a / (5.22)

Since these spatial pulsations of velocity are transferred with velocity
v, the frequencies of the corresponding pulsations will be f = V/A or
®w = gqv. Thus the intensity of the velocity pulsations with frequencies
between w and ® yill be

[t‘:v(w;"’)]2 = §(£)2/3 =[[6V(w)) Zam (5.23)
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Differentiating this magnitude with respect to w yields the required
value:
(5.24)

z)z/ °1

w

[ov(w)]® = % Y(

9 0

Substituting this result in equation (5.19) gives the equation for the
spectral distributicn of the pressure acting on a receiver placed in a
turbulent stream.
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2/3
4
p'é(w)as = 3 rezpzvz(‘i) dw (5.25)
w w
The constant 7y, as has already been pointed out, is evidently a function
of the velocity v. Its value has been considered in connection with the
diffusion of sound in a turbulent flow (section 10, egs. (2.58) and (2.59)).

Since Y and € may be assumed as known, equation (5.25) permits
computing the spectrum of the turbulent noise. As is seen from this
equation, the noise of a turbulent flow is concentrated around low fre-
quencies; the intensity of sound near the frequency  1is proportional

to w—5/3. For o = 0, equation (5.25) is not valid since slow pulsatiocns
in the mean velocity v have been included. With regard to the de-
pendence on the wind velocity, if Yy is assumed constant, the dependence

on the velocity is obtained as VS/S. It was pointed out, however, that
Y 1increases with the velocity in a manner which is as yet difficult to
determine precisely but which, from all the data available, may be taken
approximately as v. If this dependence is taken into account, the noise

should increase as vll/s. Finally, it must be borne in mind that equation

(5.25) is not suitable for high frequencies since in its derivation it
was assumed that the dimensions of the receiver were a << p. Hence,

it 1s applicable only to w < 2nv/a. (Otherwise, terms are added which
are due to the local acceleration ov/dt.) Undoubtedly it gives a lower
limit of the sound. The fact that the intensity of the sound increases

as w—5/3 is evidently one of the greatest obstacles to acoustic direction
finding, since predominantly low frequencies (80 to 100 hertz) which will
be masked by the turbulent sound arrive from a distant airplane.

29. Shielding a Sound Receiver from Vortical Sound Production

No universal method of shielding a sound receiver from vortical
sound production is possible. The question depends essentially on the
dimensions of the receiver and on the working frequency range, the choice
of which is determined by the character of the signal that is to be re-
ceived. It is nevertheless possible to indicate certain methods that
may be found useful.
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In the first place, it is possible to vary the dimensions of the
receiver so that the Strouhal frequency may be displaced either toward
the lower frequencies (by increasing the dimensions of the receiver) or
toward the higher frequencies (by reducing the dimensions), depending on
the purpose. This method is based on the fact that for the same velociily
of the approaching stream and shape of receiver the characteristic Strouhal
frequencies are inversely proportional to the linear dimensions of the
receiver:

£ al (5.26)
£ a’

In those cases where the change in dimensions of the receiver is not a

rational procedure, a scund-transparent screen F of netting or fabric

(fig. 49) may be applied. The principal air flow in this case tends

to pass around the screen and the velocity of the flow within is con-

siderably lowered. The Strouhal frequency formed on the vortex deflector

1s then lowered and will be equal to

s p 4 (5.27)

D

f!

where T 1s the Strouhal frequency on the body of the receiver M, 4
the dimension of the receiver, and D the dimension of the deflector.
It is necessary to avoid angles, projections, and so forth, on the body
of the deflector, since they may become the cause of vortex formation in
an undesirable range of frequencies,

In addition to the effect of lowering the frequency, which was due
to the screen, the region of the vortex formation is farther removed
from the body of the receiver, another useful -result of this method.

A part of the flow will nevertheless pass through the screen, but its
velocity v' will be less than the velocity of the approaching flow

v. Because of this lower velocity, the frequency of the vortex formation
immediately at the receiver is likewise lowered in the ratio

e, Y (5.28)
v
while the amplitude of the pressure will drop by (V'/V)Z. The value
of v can not be computed exhaustively, but reasonable estimates may

be made. For this purpose, the resistance of the nettings to the flow
of air (or of water) must be considered.

In view of the fact that nettings or screens are widely applied for
various wind-shielding apparatuses, it is necessary to discuss them in
more detail. TIf the difference in pressure on both sides of the screen
is set equal to Ap, and the volume rate of flow of the air through it is
set equal to Q cubic centimeters per second, then
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Ap = WQ (5.29)

The magnitude W defined by this equation is the resistance of the

screen, This magnitude may be represented in the form
W=w (5.30)
where S 1is the cross-sectional area of the flow, 1 the effective
thickness of the screen (or other porous partition, for example, fabric),
and w the resistivity. The characteristic magnitude for a screen is,
of course, the product wl. The resistance W 1is considered as the
resistance of a system of parallel ducts (or small tubes), the length of
which 1s equal to 1 and the cross-sectional area of which is equal to
0; the area of the screen on which, on the average, there is one opening
is denoted by Z. If the ducts are not identical, then 1, o0, and 2
must be considered as the characteristics of the mean representative of
the ducts. 1In order to determine the pressure drop Ap over the length
of the duct 1, the eguations of Navier-Stokes reduced to nondimensional
form were used. For measuring the coordinates along the duct, the length
scale was taken as the length of the duct 1, and for the transverse
scale, the magnitude 1/_. The scale of velocity would be the velocity
of the flow wu, and the scale of the acceleration the magnitude wu,
where w 1is the frequency of the flow pulsations. These equations are:
-
:—I + (3,9)V = - ‘*;B + 0.9V (5.31)

where v = u/p is the kinematic viscosity. The derivatives d/dx,
0/dy, and 3/dz may be reduced to the derivatives along the duct (d/ds)
and transverse to the duct (3/0n). Then, setting J/dt = wd/dt',

o/ds = (1/1)9/0s', d/on = (1/4/0)d/on', ¥ = w.¥', and p = Ap.p', equa-
tion (5.31) reduces to the form:

— v! 5?;' v' -~
o av! + uB S s ,_nm ov!

7 ds /o on'

Sz, g ap')+vu(52§?' 2 523') (5.31")

—_l ey 7
lp ds’ Vo on' o \dnr2 12 3g'2

where all the stroked magnitudes are nondimensional and the magnitudes
and their derivatives are of the same order;‘E' and n' are unit
vectors along and transverse to the duct. The case where the viscosity
is the predominant factor is considered first. In this case the last
term predominates over the others. Dividing the entire equation by
uu/o, the desired pressure drop Ap will be measured in the units

lpvu/o (8nuluf/o  could be used as this corresponds to the Poiseuille law) .
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in equation (5.31') dimensionless parameters on which Ap may depend,
namely, wo/u, uo/vl, and 0/12, will enter. Thus,

8mulu us g wo
Ap = g Fl (E, Z—z', _U_) (5.3?)

where F is a certain dimensionless coefficient depending on the in-
dicated parameters. The term ucﬁ)l represents the Reynolds number and
determines the ratio of the inertia to the viscosity forces. The value

of this term is small for small wu, but for these values of u the
equation becomes linear; hence for small velocities of flow F practical-
ly does not depend on uU/UZ. Further, for long ducts (0/12<K: 1) the
pressure drop should be proportional to the length of the duct 1; hence,
F, should likewise not depend on 0/12. Thus,

8l uxy
e S (5)

for 9«1, 0«1 (5.32")

1 12

Finally, for small frequencies (am/b << 1) the Poiseuille law must be
obtained so that ¥(0) = 1. For large wo/v, the coefficient V2 4Jac/o
(see, e.g., Crandall, ref. 53). For uc/u2,>'1, the forces of inertis
will predominate over the viscous forces, and therefore it is convenient
to use the dynamic pressure pu2/2 as the measure of the pressure. In
an analogous manner, the following equation is obtained in place of
equation (5.32):

Ap =R4 T F, (‘i, o, M) (5.33)

For small values of the parameters entering the function F2 this
coefficient will only slightly depend on them. The square law of the
resistance is therefore cobtained. The effect of the acceleration is
now determined by the parameter w+/0/u. The volume rate of flow Q
is computed as

S
Q=uo = (5.31)
z
When u from equation (5.32) is substituted and when equation (5.34) is
compared with equation (5.29),
_ Bmu 3 o) 1
o= GV (T) 5
for

ug o} .
o7 > L 1—2- <1 (5.35)
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In the same manner, substituting u from equation (5.54) in equation
(5.33) yields

4o o zQ
for
Wwos g < (5.36)
vl 12

where ¢ 1is the value of F2 for small values of \Jl/uc and 0/12.

If the frequencies of the pulsations are not large, W will increase lin-
early with an increase in Q. In the case W = 0, by the author's meas-
urements (ref. 54), the numerical value of the coefficients { and @
is such that

-3 Z 1 g
WA = 2.5 . 10 L.
0 02 8 (sec)(cm)*
for
Q <1.5. E? (5.37)
z
and
-2 %z Q g
W=2 .10 W — =
0 /5 5 (sec)(em)d
for
Q>>1J5%} (5.38)

For the correct application of equations (5.37) and (5.38), it is
necessary to take

o = ab
E: (a + a)(b + a) (5.39)
1 =24

where a and b are the lengths of the sides of the openings and 4

is the thickness of the fibers of the netting or fabric. It is necessary

to bear in mind that the last equation is valid only for the condition
W >> WO. In the intermediate region, the resistance must be considered

as the sum W' 2 (W + WO)/Z. This intermediate region corresponds, as

experience shows, to the values of the Reynolds number uo/ul z 10,
which corresponds to the values of the volume rate of flow Q indicated
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in equations (5.37) and (5.38). Figure 50 shows the form of the resist-
ance W as a function of Q for fabric with a =Db = 1x10-2 centimeter
and d = 8X10-2. The transition from the resistance Wgp, independent

of the velocity, to the resistance W proportional to the velocity, as
predicted by theory, is apparent in figure 50. The computation of the
resistance of a fabric or netting permits the evaluation of the velocity
u of the flow of air through a meshed screen.9? The value of the pres-
sure drop of the air flowing through the meshed screen will be

2
op = BBV (5.40)
2

where p < 1; this pressure drop 1is equal to

8o v _yg-ws &=w1 & (5.41)
2 S S

The magnitude Q/S 1is the mean velocity of the flow v'. For

UU/UZ < 10, the unit resistance wl (it has the dimensions mechanical
ohm/cm®, and 1 mechanical ohm = 1 g/sec) is constant and equal to wgpl.
Hence from equation (5.41),

v' - Bov_ (for us < 10)
v 2WO l
= Y2 (5.42)
ag

From these equations for a fabric with wgl = 10 mechanical ohm/cm2 and
v = 5 m/sec, v'/v = 3px1072 << 1. The term ugfol = v'Zfol = 7.5:p << 10

(assuming £ = 107° and 1 = 2+10"%). For larger values of ud/vl,
equations (5.38) and (5.41) yield

2 !
v (EE)I/ (for v'Z oo, 10) (5.43)
v 2y vl

where Y 1s the coefficient of proportionality between the unit resist-
ance wl and the velocity v':

wl = yv' (5.44)

39All these considerations refer also to the flow of water, but the
numerical coefficients in equations (5.37) and (5.38) will be different.
Further, the fabric will swell up in water so that its dimensions will
change considerably.



158 NACA TM 1399

On the basis of equation (5.38) y = 2:1072wylZ/4/0. For the same data
and o = 1074,

y = 2-107¢
v'/v = 0.17[31/2
and
viz /o1 = 8+107%1/ 2y

so that for v = 10 meters per second, v'Z /0l = 8061/2. In this case
the velocity v' of the flow through the screen is linearly connected
with the velocity of the approaching flow v. From equations (5.42)

and (5.43) it is apparent that a considerable lowering of the velocity
within the screen for moderate resistances (about 10 mechanical ohm/cm )
of its fabric can be obtained. The extent such a screen will lower the
intensity of the sound of the arriving useful signal has to be con-
sidered. Actually, the resistance in this case must be computed by
equation (5.35) for w # 0. The magnitude W(wo/b), although it in-
creases also in this case, nevertheless still remains 2 magnitude on the
order of 1 (for medium frequencies and small values of o). It is
therefore possible to take the value of W for w = 0. If the resis-
tivity is w, the pressure drop of the sound wave will be

dp = - w dx*Q/S = - w dx E, where ¥ is the velocity of the fluc-
tuations. This magnitude is equal to p/pc where ¢ 1is the velocity
of sound. Thus

dp = - p dx (5.45)

L
pc
therefore for the total thickness 1 of the screen,

1
p = pye PC (5.46)

That is, the drop in intensity of the sound in decibels will be

I(db) = - 20 log e . YL = - 0.20w1 (5.47)

pC

that is, for example, for wl = 10 mechanical ohms per centimeter? only
about 2 decibels. Thus, without conflicting with the sound transparency,
it is possible to lower the velocity of the flow within the screen and
thereby lower the frequencies and intensities of the vortices.
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In connection with screens, it is of interest to point out another
method of their application for eliminating the vortex formation. This

elimination depends on the fact that a flow passing through a sufficiently

transparent screen becomes turbulent, the frequencies of the vortices
being then determined by the dimensions of the meshes of the screen &
and the velocity of the flow (f'” = kv/&). These frequencies may be so
high that they appear beyond the limits of the frequency range of the
receiver. The placing of such a screen near (or around) the receiver
will not, of course, shield the receiver from the Pressure pulsations
in the flow if it is nonstationary, but the vortex formation on the
body of the receiver will be artificially displaced toward the region
of high frequencies f'"'. This effect is shown, for example, by the
protective screens that cover the mouths of loudspeakers (fig. 51). 1If
there were no screen, the frequencies of the vortices would be deter-
mined by the dimensions of the opening of the loudspeaker. The screens
displace the spectrum of the vortices toward the higher frequencies.
This breaking down of the vortices is very well shown in the excitation
of resonators by an air stream, discussed in section 27. If at the
mouth of such an excited resonator a screen §'s" is placed inter-
secting the stream (fig. 52), the excitation of the resonator is im-
mediatedly cut off, even for the case of a very rough screen (meshes of
the order of 1 cmz). This change in the scale of the vortices is also
employed for the absorption of vibrations in open wind tunnels by
placing near the opening of the tunnel from which the vortices are
?hed projecting lugs which break down these vortices into smaller ones
ref. 50).

30. Shielding of Sound Receiver from Velocity
Pulsations of Approaching Flow

If the approaching flow is not steady, the problem arises of
shielding the sound receiver from the pressure pulsations brought about
by the nonsteady flow. In section 28 it was explained that, for the
condition where the mean velocity of the flow v 1is much greater than
the velocity pulsations v and for the condition where the dimensions
of the receiver d are much less than the dimensions of the pulsations
A, the nonsteady flow about the body of the receiver may be considered
on the basis of g knowledge of the flow Picture for the steady flow.
This permits making use of the important results from the theorem of
Bernoulli applied to the flow about a body. 1In the flow about bodies,
due to the compression of the stream, the velocity of the stream on the
lateral sides of the body increases, while ahead of and behind the body
it is slowed down. As a result, by the law of Bernoulli,

ve
P = constant - p = (5.48)
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the pressure on the lateral surfaces of the body drops, while it in-
creases ahead of and behind the body. On figure 53 is shown the pres-
sure distribution over the surface of a sphere and of a streamlined body.
A particularly interesting picture is evidenced in the case of the stream-
1lined body.

The pressure in the middle part of the surface is not only negative
but is very small in absolute value. Hence, if the sound receiver is
placed in this part of the body, the change in pressure produced by the
velocity pulsations of the flow may be very small. For a suitable
choice of the shape of the body, the local coefficient B could be made
to attain a value between the pressure p and the dynamic pressure
va/Z up to 0.02. We may note that for a mean velocity of the flow
directed along the axis of the body (dB/dW)o = 0 so that equation (5.13)
reduces to

p' = Bppv dv (5.49)

The receiver diaphragm may be made flush with the surface of the de-
flector at the place where Bp 1s minimum, or the receiver may be

placed within the deflector, making a part of its screen transparent to
sound. The sound-transparent surface must be very smooth and not too
transparent tc the flow; otherwise the flow about the body may change
considerably.

The pressure distribution over the body with maximums ahead of and
behind it and a minimum at the lateral sides suggests still another
method for dealing with the pressure pulsations, namely, the principle
of compensating the pressures. The essential character of this principle
will be described in a simplified idealized form by imagining a body of
the type illustrated in figure 53 placed in a stream. Inside the body
there will be a chamber with a pressure receiver in it. A part of the
surface of the deflector will be made transparent to the flow, for
example, at the forward part where the pressure is positive and at the
sides where it is negative (fig. 54). Under these conditions there
will be a stream of air through the chamber. The velocity of this
stream normal to the surface of the deflector will be denoted by vp,
and the difference in the pressures outside and inside the transparent
partition by A4Ap = P, - Py- The flow of air passing through the ares
ds will then be equal to:

>

Pa - Pi
dL = v, . ds v, = 7P= — (5.50)
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where W 1is the resistance of the partition. The total flow through
the entire transparent parts of the surface of the deflector will be:

L =fvnds =fg§% . ds (5.51)

On account of the incompressibility of the fluid, this flow must be

equal to zero; hence,
p. . ds p. . ds
a i
= = —_— 5.52
f W f W (5.5%)

If W 1is constant, it follows that the mean outslde pressure is
equal to the mean inside pressure:

The mean is taken over the transparent parts of the deflector. IT
W 1s large, the interior velocities will be small and the pressure
p; may be assumed as practically constant over the entire volume so
that p. = P By choosing the position of the transparent surfaces
and their resistance W and making use of the fact that at some places
P, > O and at others p, < 0, p, may be made equal to zero; from
equation (5.33) it then follows that pj = O. Thus, a chamber of
constant pressure is derived. An example of this type of chamber is
illustrated in figure 54. The parts of the deflector transparent to
the air flow in the given case are located forward (screen Sl) and at

the sides (screen sz). At sq, Py > 0 and at s9, p < 0. The third

screen sz breaks up the additional stream entering the chamber through
the opening sj. In this case, it was found possible to attain the
value By = 0.001 for the position of the microphone M shown in the
figure so that the pressure near M was only a thousandth of the dynamic
pressure. The screens were still entirely transparent to the sound.

The screens are important also from the viewpoint that, using acoustical
terminoclogy, they reprecent only active resistances since the enclosed
chamber possesses no rescnances. If for example, the deflector is made
rigid with a small number of openings, a resonator of the Helmholtz

type is obtained which strongly distorts the frequency characteristic

of the receiver device.

The preceding discussed principle of pressure compensation leading
to the formation of a constant-pressure chamber in many cases partially
acts, so to speak, by itself. In fact, if the receiver is placed inside
a deflector provided with walls transparent to the flow, it is sufficient
that a part of the flow enter the chamber at P, > Py and issue at

Py < p; for at least partial compensation to take place. Such partial
compensation will be obtained, for example, in a screen deflector having
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the shape of a sphere (see fig. 49) on the surface of which, for a
sufficiently thick screen, there will occur both positive and negative
pressures (see diagram of pressures in fig. 53).

As an example there may be cited the shield of a loudspeaker
(fig. 55) made in the form of a sound-transparent sphere which encloses
the opening of the speaker. If the transparency of such a sphere for
the air flow is small, the pressures will be distributed as shown in
the figure by the + and - signs, and compensation of the pressure
pulsations due to the velocity pulsations will to a certain extent
be obtained.

It must, however, be borne in mind that all the conclusions refer
to that part of the pressure pulsations which is produced by a change
in the dynamic pressure. The local changes of the velocity, as has
been explained, likewise lead to pressure pulsations of the form

no__ aV
P = pgy St
of the magnitude p' = B'pv2/2 so that it will form a certain back-
ground serving as the limit of the lowering of the acoustic inter-
ferences brought about by an unsteady flow. It is possible, of course,
to suppose that this part of the pressure may likewise be subject to
compensation, but for this there is no rational data because very
little is known of the flow about bodies in a nonsteady stream. More-
over, the possibility of eliminating the interferences due to this
part of the pressure may be doubted since they are essentially the

same type as the pressure changes produced by a sound wave in a wave-
less region. The elimination of such interferences will therefore
probably be in contradiction to the requirements of the sound receiver.

This part of the pulsations remains even on the lowering

31. Sound Receiver Moving with Velocity
Considerably Less Than Velocity of Sound

The fundamental problem which 1is encountered in the mathematical
theory of a moving receiver is that of computing the variable pres-
sure produced by an approaching sound wave on the surface of a re-
ceiver, in particular its working part. This problem includes the com-
putation of the flow about the body of the receiver, a computation
associated with well-known difficulties.

A particularly difficult problem is that of the vortex formation
arising behind the body. If the recelver body is of a well-streamlined
shape, however, then, at least in its forward part, the flow may be
considered as potential. If the working diaphragm is located in this
part, the application of the potential-flow theory may be entirely
practicable. In this section the idealized case of potential flow for
V << ¢ will be considered.

3343



evee

NACA TM 1399 3

In this case the equation for the potential of the sound wave @,
if terms of the order of va/c2 are neglected, is (see eq. (1.85)):

2 w
1 ® 0 yoe
S ==00+ 2|, =
c2 Jt@ (CZ ’ at)

where ﬁo is the potential of the undisturbed flow about the body of
-+

o/

(5.54)

Q/

the receiver (v = - Véo). This potential satisfies the equation
£%y = 0 (5.55)
and the boundary condition
3%,
—= =0 (on the surface of the body) {(5.56)
on

where df/dn  is the derivative along the normal to the surface of the
body. The required sound potential @ must satisfy equation (5.54)
and the boundary condition

o0

0  (on the surface of the body) (5.57)
on '
(the yielding of the diaphragm is ignored). For a harmonic sourd of
frequency o .the frequency @ 1is considered in a system of coordinates
in which the receiver is stationary and the medium is in motion), set
O = woeiwt. Then from equation (5.54)
., L W -
Do + K, + 2ik = (W, T05) = 0 k=2 (5.541)

The potential of the sound wave ¥ in the absence of the flow is assumed
known. This potential must then satisfy the equation

Ny + kZ\uO =0 (5.54")
and the condition awo/Bn = 0 on the surface of the receiver. Setting
&g
-1
c
oo =Yy - e (5.58)

where éO is the potential of the flow and then substituting this
solution in equatign (5.54') satisfy the equation (5.54") when terms of
the order of v“/c® ure neglected. Equation (5.58) may therefore be
considered as the solution of equation (5.54) with the assumed accuracy,
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This solution satisfies also boundary condition (5.57). 1In fact,

{ . ¥o
ég:= éfg eiwt = el(bt-—z‘) (éﬁg - EE §39 Wé) =0 (5-57')

dn  on

on the surface of the body, since Swo/an and afo/an are equal to
zero, Thus, 1f the wave field VYo 1is known near the stationary re-
ceiver, then with an accuracy up to v/c the field near the moving

receiver ¢O is obtained with the aid of the simple equation (5.58),

In particular, if there is considered a plane wave propagated, for
example, in the oz-direction, the solution for the stationary receiver
will be

Vo = e 1 5(r,0,0) (5.59)

where Ae'ikz is the incident wave and S 1is the dissipated wave. For

large r, S must have the form S = B(G,w)e'lkr/r, where B(8,p) is
the amplitude of the dissipated wave at a large distance from the body.
It depends only on the angles 6 and ¢, which determines the direction
of the dissipated beam. The solution for the moving receiver will be:

% %o
i wt—kz—kjy i wt—k;;
P=A . e + 8(r,8,0)e (5.60)

At a large distance from the body, the factor e'lki)O/C essentially
gives the Doppler effect. In fact, for illustration take the case of
a plane wave moving on the body with velocity v along the z-axis.

Then at a large distance from the body ¢O = - vz, and therefore the

phase of the approaching wave is [wt-k(1-v/c)z]. Consider next s
system of coordinates in which the flow is at rest, £ =z - vt. In
this system the phase of the wave will be

[wt-k(1-v/c)z] = [w(l-v/c)t-k(1-v/c)t], and therefore the frequency is
equal to Ry = w(l—v/c). Hence the frequency in the system in which
the body is at rest will be

e (1+Z)+--. 5.61
® 1 - v/e *o c ( )

as must be the case by the equation for the Doppler effect. The
variable pressure on the surface of the receiver will now be computed.
For this purpose use is made of the equation of Bernoulli, according

to which
[v(@+e) ]2
w=] % - constant + ® Vo™ (5.62)
P ot 2

3343



SN

NACA T™ 1399 165

pt+x P
Since the small change ow = L/w dp/p - U/w dp/p = 1/p, where =x

1s the sonic pressure, there is obtained for the variable part of the
pressure

k¥,
b1t , -i——g
20 . [iwwo—(V¢O,VWO)] € € + terms of higher order (5.63)
p

Far from the body where the flow becomes uniform, this equation
does not give any results of interest. It confirms only the fact that
the pressure x 1in a system of coordinates in which the body is at
rest is the same as that in s system in which the body moves (for
checking this statement, it is necessary to take into account the
Doppler effect, by virtue of which, in a system of coordinates con-
nected with the flow, J0/dt = wy®  and not w®).

Near the body the situation is otherwise. The magnitude Y5 near
the surface of the body is of the order of magnitude equal to the ampli-
tude of the incident wave A (see eq. (5.59)) and Wy 1s of the order
of magnitude equal to A/a, where a 1is the dimension of the body
(here the tangential component of Wy 1s considered; the normal com-
ponent is equal to zero). Hence the first term in equation (5.63) 1is
approximately equal to wA and the second 2 VA/a. For v/a > w
the pressure on the surface of the receiver will be determined not by
the first but by the second term. The amplitude of the potential A
is connected with the amplitude of the pressure of the incident wave by
the equation A = no/ipw. Hence, according to equation (5.63), the
pressure on the surface of the receiver due to the first term on the
right side of equation (5.63) will be =n' = Ty and that due to the
second term will be =" = vno/aw and for V/a > w may be greater than
n'. That is, the characteristic amplification effect occurring in a
moving receiver is obtained provided its dimensions are sufficiently
small and the frequency of the sound is not too high. The condition
of the presence of such amplification may, on the basis of what has
been said, be written in the form

o<

> 21a (5.64)
x

where V/c << 1. The dimensions of the receiver must thus be very much
smaller than the length of the sound wave A,



166 NACA TM 1399

32. Sound Receiver Moving with Velocity Exceeding Velocity of Sound

This case of the motion of a receiver presents special interest
and at the same time special difficulties for theoretical cowmputation.
These difficulties are connected with the fact that to all the com-
plexities of the problem of the flow about a body there 1s added the
further feature of supersonic motion, the existence of density jumps
(or shock waves) the occurrence of which was discussed in section 19.
Tnstead of a solution of the problem posed, this section will be re-
stricted, in addition to a few general remarks, to the discussion of
the idealized simplest case which may serve as an orientation for a
more detailed analysis of the problem of a receiver moving with super-
sonic velocity.

This problem has been the subject of frequent discussions (see,
e.g., ref. 34) and various questions have been raised: Will the re-
ceiver in general receive the sound signal; will there exist a re-
flected wave; and so forth. There is, in fact, no basis for assuming
that a receiver moving with supersonic velocity will not receive the
variable pressure of a scund wave as soon as it is incident in its
field. Tt is evident that it will always fall in its field provided
the sound does not issue from a source located behind the receiver
so that the sound is forced to cvertake the receiver which for v > ¢
it cannot do.

The wave dissipated by the receiver will possess the characteristic
that its entire field will lie behind the receiver in the Mach cone and
moreover will be double (see section 20); that is, there will be two
fields of different frequencies. For supersonic velocity of the re-
ceiver, however, the transmitted wave before reaching the receiver body
must pass through the shock wave separating the part of the medium
undisturbed by the wmotion of the body from the undisturbed part. Figure
56¢ illustrates what has been said for the case of a sound wave radiated
by the source Q and received by the receiver P moving with velocity
v > ¢. The curve M'MM" represents a section of the surface of the
shock wave.

In connection with this, the question arises of the passing of a
sound wave through a shock wave which is, in a way, a second screen of
the receiver.

Under the usual conditions the presence of a sharp change of state
of the medium would necessarily lead to the occurrence of two new waves,
the reflected wave and the transmitted one. In this case, however, a
reflected wave, as it is known, cannot be formed since the shock wave
moves with supersonic velocity and without doubt would overtake the wave
reflected from it. A certain light is thrown on this paradoxical
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situation by the consideration of the simpler problem, namely, the
transmission waves through a plane shock wave. It will be shown that
in this case two transmitted waves arise of which one is a prarticular

type.

Assume a straight density jump (shock wave) lying in a plane parallel
to the plane x = 0 and moving in the direction of the positive x-axis
(fig. 57) with velocity V. As was explained in section 19, the velocity
V  1s greater than the velocity of sound in the medium at rest (v > cz),
in which the shock wave is displaced. The case will be considered in
which a plane wave (from x = + ) is propagated so as to meet this shock
wave. Since in the shock wave a jump in entropy occurs, recourse nust
be made to the general equations of the acoustics of a nonhomogeneous
moving medium (eqs. (1.70), (1.71), (1.72) and (1.73)) if the propagation
of sound is considered under these conditions. These equations for the
one-dimensional problem which is being considered are

I A RO NC
ot dx  p Ox dx  \dp g OX ds/y Ox i
. L (5.66)
at ax ox
24y P g (5.67)
3t ox

In these equation & is the velocity component of the sound vi-

brations along the x-axis (Ey'= £, = O); v 1is the velocity of the medium

along the x-axls (vy =v, =0); &, 1, and 0 are the changes in density

of the gas, its pressure, and entropy, respectively, produced by the
sound wave. The terms ¢p, 7p, and ¥s are neglected because p, p,
and s are assumed constant on each side of the shock wave., If the
entropy of the medium were everywhere constant, then, as was shown
earlier (see section 4), 0 = 0. In a shock wave, however, the entropy
itself changes discontinuously so that it must not be assumed that

s = constant and it is not legitimate to assume o = O for the entire
medium. In the incident wave, of course, propagated in a medium at rest
(eq. (5.66)), 0 = 0, since this wave may be considered as a usual adiabatic
sound wave. With regard to the secondary waves arising as a result of
the interacticon of the incident sound wave with the shock wave, the
question whether these waves are accompanied by changes in enthropy or
not can be decided only on the basis of the consideration of the
boundary ccnditions.
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For the solution of the previously mentioned problem, it is con-
venient to use a system of cocrdinates in which the shock wave is at
rest (x' = x - Vt). 1In this system the velocity of the medium is

u=v -V (5.68)

and equations (5.65), (5.66), and (5.67) become

oF LA ce 0% h oo
= tus = [ 2 5.65"
ot T ox'! ( p Ox! i 0 ax') (5.651)
0% 08 &
St tUSgr tP 57 =0 (5.66")
® L 90 g (5.67")
dt ax!

where in place of (Bp/ap)s and (ap/as)p are used the values

o\ _.2_,p
— = _.Y".._
(Bo)s P

op\ . _
(8, -

With the assumption that the incident wave is a harmonic wave, &, 9,
(w't+k'x")

and 0 may be set proportional teo ef , Where ' 1is the

frequency (in the system x') and k' is the wave number. For such a

wave, carrying out the differentiation in equations (5.65'), (5.66'),

and (5.67'), yields

& o

(5.69)

12

(w' + uk")E = - kic 5 - 2 k'c (5.70)
p P

(' + uk')d = - pk'E (5.71)

(w' + uk')o = 0 (5.72)

From the preceding two solutions are obtained: either o = 0 or

(w' + uk') = 0. In the first case, from equations (5.70) and (5.71)
there is obtained
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k' o=
+C - U
cd
E::F._
p
o =0 (5.73)

This solution represents the usual adiabatic sound wave, the phase
velocity of which is equal to Ve =+ C - u, as should be the case for

a moving medium (if a system of coordinates is used in which the medium
is at rest, i.e., u= 0, the Ve = xc), where c is the adiabatic

velocity of sound in the medium under consideration.

The second solution of equations (5.70), (5.71), and (5.72) reads

w’
Vo _ —
k' o= u
g =0
2
c
= - — B 5.74
- (5.70)

Tn this wave the velocity of the sound vibrations is equal to zero;
while changes occur in the entropy o¢ and in the density © of the
medium, this wave does not, however, give rise to changes 1n pressure
in the medium. In fact, n = c% + ho. From equation (5.74) it follows
that

=20 (5.74")

This conclusion is evident also from the fact that for the wave under
consideration the velocity & = O so that the moving force must like-
wise be equal to zero. It is convenient to call this wave an entropy
wave. As is seen from equation (5.74), this wave is propagated with a
velocity equal to the velocity of motion of the medium u; that is, it
is essentially simply carried along by the medium. Thus there are two
types of wave. At first glance it appears that the discussion could be
restricted to the usual isentropic waves (eq. (5.73)) and, with the
possession of two independent solutions, the boundary conditions on the
shock wave could be satisfied.

It could, in fact, easily be shown that from these solutions it is
not possible to construct a solution satisfying the initial data which
represent, for example, a restricted train of waves encountering the
shock wave. On the contrary, in the problem presented herein, there
must be unavoidably recourse to the solution (5.74); that is, in the
shock wave there occur, as was already mentioned, irreversible
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processes, and the disturbances of this shock wave will give rise to
entropy fluctuations which will be propagated as a wave of the form of
equation (5.74).

All these results are obtained automatically if the conditions on
the surface of the discontinuity (see section 19) are used with the sub-
stitution of the differential equations of the hydrodynamics of a com-
pressible fluid. According to equations (3.93), (3.94), and (3.95),
these conditions are

ey = ugep
2 _ 2
Pqul + Py = ppus + Ps
o 2
uy Y2
Wl + ? = WZ + 2 (5.75)

where the subscripts 1 and 2 refer to the medium behind the shock wave
(1) and to the medium at rest ahead of the shock wave (2). The first

of these conditions expresses the law of the conservation of matter;

the second, of momentum; and the third, of energy (w is the heat
function). In the transmission of a sound wave, these conditions change
since all the magnitudes receive small increments (£, 8, n, and o). It
must also be taken into account that u = v - V and that the velocity
of motion of the shock wave V must likewise be varied. The change in

this velocity will be denoted by A. With the use of only linear approxi-

mation, the varied conditions which will be the boundary conditions for
the sound wave on the shock wave will be obtained from equation (5.75).
Thus, replacing in equation (5.75) u by & -A,p by p+ &, and

P by p+ n yields

udy + (81 - A)py = ugby + (Ey - A)py (5.76)

2 2 2 2
u151 + 2({1 - A)ulpl + clbl + hyo) = ugd, + 2(52 - A)uzpz + 5By + hoog
(5.76")

(since =n = 028 + ho) and finally from the third equation of equations

(5.74), it is borne in mind that B&w = czﬁ/p + czo/r (r 1is the gas
constant, p = rpT) there is obtained

2 2 2 2
C1 c1 c2 C2
pp 01t T ot (& -8) =8+ T o tup (& - A)

(5.76")
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In the undisturbed medium (x > 0, subscript 2) there.is only the
incident wave. For this wave 0p = 0 and &g = - cpd3/p2, where Co
is the adiabatic velocity of sound in the undisturbed wmedium. In the
medium beh%nd the shock wave (x < 0, subscript 1) the change in density
1s ®, =8 + 85, where Si belongs tg the transmitted isentropic sound
wave for which gi = - c161/p2 and ®7 belongs to the entropy; wave for

vhich £ =0 and o) = - c%)/n = - v/(r - 1) x r6/p1. With the use

of these relations, &€ and ¢ are eliminated from equations (5.76),
(5.76'), and (5.76"), and after simple algebraic transformations there
are obtained

2 ! 2 2. " 2
(up - c1)® . 87 +uf + u1dy = (up - co) 5, (5.77)
uz CZ 0l CZ
—l + -l - Clul i + i— 6i + —1 - L —l 6;
P2 Py P P2 P2 ¥ - 1py
wf  cf 1
1
= — 4+ — - C2u2 - 4+ — 62 (5.77')
P1 P2 Pl P2

From conditions (5.75) it is Possible to express the magnitudes
characterizing the state of the gas behind the shock wave in terms of
the ratio of pressures pl/pz, in the shock wave, and ahead of it (see

section 19); there are then obtained

b1
- 1) + + 1) =
b1 (v ) + (v ) 3
P2 Py

(v +1) + (+r - 1) P2

Py
. Dy (r - 1) ps + (v +1)
Cl = CB *« (5.78)
Ps Py
(r+1) g2+ (r -1

o [w-l)i—;uru)]z

YT ey

’ (Y+l)§—;+(r~l)
u2=c—2[(r+l)i+(r—]€| (5.79)
2 2y po *
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where Uy, Ug < 0, and c% = sz/pz = c% is the square of the adiabatic

velocity of sound in the undisturbed medium. The medium ahead of the
shock wave will be assumed at rest so that u, =vy - V= - V(vy = 0).

The magnitude 62 is given by the amplitude of the incident wave.
Hence, from equations (5.78) and (5.79) it is possible to find Bi and
61 for the transmitted waves. With these values it is possible, according

to equations (5.73) and (5.74), to obtain the remaining characteristics
of the transmitted waves. The pressure in the incident wave will be

denoted by Ty = 0262 and the pressure in the transmitted acoustic wave,

by n' = c%&i (since o = 0). With the elimination of 81 from equa-
tions (5.77) and (5.77'), the ratio n‘/no = C%&i/CZBZ is obtained:

- 2 2 2 -
(u2 Zlutr 1 1] uffusn L1l _upfl +1)

X o [cF Pz T -1 ey Elcs P P2 2 \M P2/

-

0 2.2 2 2 -
Uy U1 1 1] Uy Full 1 Y1 1
R B R S ] Rl A G
1 L?l Jd 1 -

(5.80)

This ratio for small shock waves approaches 1, as should be the case,
and is equal to

Py - D
+ 1, 1 2+ ... (5.81)
Y P

(for (pl - pz)/p2.<< 1). For large shock waves there is obtained

1 Py - Pp

1
- . . . e (5.82)
T e 1/2
0 -1 1Y
1+2(Y ) 2

or

(here (p1 - pz)/p2 >> 1). In both cases, the sound pressure in the

transmitted wave increases in comparison with the pressure in the in-
cident wave. The pressure of the entropy wave, as has alréady been
pointed out, 1s equal to zero. Hence it is of less interest to find

8{ and o, then it is to find the changes in temperature which occur
because of the passage of the entropy wave. From the identity

p(p,T) = p(p,s) (5.83)
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there is obtained

op op _[op op .
Be-@e@e@e e

With the knowledge that (Bp/ép)T = p/p = az, where a 1is the isothermal
velocity of sound and (ap/aT)p = p/T, and with the fact that for the
entropy wave (5p/8p)55£ + (Bp/as)pcl = 0, the temperature fluctuations
produced by the sound wave are obtained in the form
81

P1

6, = T,(r - 1) (5.85)

and by the entropy wave

6, =-17, . — (5.86)

From the preceding it is seen that the role of both waves will be com-
parable only in the case where Si and ®.) are of the same order. If

from equations (5.77) and (5.77') 6i/62 1§ eliminated, 5"/52 is obtained.

1
For small shock waves (pl - pz)/pz << 1) there is obtained

6' _ -p
L_or-1 PP (5.87)
52 ar P2

and since in this case 51/62 is near 1, the entropy wave does not

play a marked role. "Farther on its value increases, and with increase
in the shock wave 81/62 approaches

" (r -1+ (T3
1+2 (Y é 1)1/2

v

/2
)1

1
5, =7 (5.877)

For the sound wave 81/5, ' /ng cz/cﬁ. As a result of equations

(5.78) and (5.82), for large shock waves this ratio is equal to

(o4
= -

1

1+ 2 (Y - 1)1/2

2r

(5.87™)

N
1]
=< |~
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Thus for (pl - pz)/p2 >> 1 the value of both waves in relation to the

fluctuations of the temperature of the medium behind the shock wave
becomes of the same order:

B
t Yy -1 1 ._E
6, =T, - (r-1)172 or (5.88)
1+ 2
2r
1/2
Yy - 1
(*r-l)+( ) 8
o) = -1, = Qs = (5.88")
1/2 1
v -1
1+2( -

From equation (5.82) it follows that for large shock waves the
sound pressure behind the shock wave is intensified. From this, of
course, there is not to be drawn any final conclusion as to the pres-
sure on the sound receiver itself. It may be assumed that in the case
of supersonic velocity of motion of the receiver there will also occur
the intensification which was considered in section 29, based on the
theorem of Bernoulli. This side of the question is not possible to
analyze in greater detail because the supersonic flow about a body
presents, as yet, a far from solved problemn.

The very simple case considered herein leads to an explanation of
the absence of a reflected wave when a sound wave passes through a
shock wave, and there is no basis for thinking that this aspect of the
matter would be subject to essential modification for shock waves of
more complicated form (of the type illustrated in fig. 57).

A similar remark may be made on the existence of two waves behind
the shock wave: the sound and entropy waves. With regard to the quanti-
tative relations, the fact that for small shock waves the transmitted
wave is almost undisturbed by the shock wave should likewise not de-
pend on the shape of the shock wave and Probably has a more general
significance than follows directly from the special case considered.

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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